基于飞算 JavaAI 的分布式事务实战:Seata AT 模式代码生成与应用
在分布式系统开发中,事务一致性是一个绕不开的难题。分布式事务涉及多个服务或数据源,一旦某个环节出现问题,很容易导致数据不一致。Seata 作为一款开源的分布式事务解决方案,其中的 AT 模式以其高效、易用的特点被广泛应用。而飞算 JavaAI 代码生成引擎则能为 Seata AT 模式的开发提供强大支持,大幅提升开发效率。本文就将通过实战案例,详细介绍如何基于飞算 JavaAI 实现 Seata AT 模式的代码生成与应用。
一、分布式事务与 Seata AT 模式基础
1.1 分布式事务的概念与挑战
分布式事务是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点上。简单来说,就是一个操作涉及多个服务或数据库,需要保证这些操作要么全部成功,要么全部失败。
在分布式系统中实现事务一致性面临不少挑战。首先,网络通信存在不确定性,可能出现超时、丢包等问题,导致事务状态难以同步。其次,不同服务或数据库的性能和可用性存在差异,某个节点故障可能影响整个事务。另外,分布式事务的隔离级别实现难度更大,容易出现脏读、不可重复读、幻读等问题。
1.2 Seata AT 模式的工作原理
Seata AT 模式是一种无侵入的分布式事务解决方案,它的工作流程主要分为两个阶段:
第一阶段:执行本地事务并提交,同时生成 undo log(回滚日志)和 lock(锁)。在这个阶段,各个参与者会执行自己的本地事务操作,并将操作结果写入数据库,同时记录下可以用于回滚的 undo log,还会对相关数据加锁,防止其他事务干扰。
第二阶段:根据全局事务的执行情况,决定是提交还是回滚。如果所有参与者的本地事务都执行成功,事务协调者会向所有参与者发送提交请求,参与者收到请求后会删除 undo log 和 lock,完成最终提交。如果有参与者执行失败,协调者会发送回滚请求,参与者根据 undo log 进行数据回滚,并释放锁。
1.3 飞算 JavaAI 在分布式事务开发中的作用
飞算 JavaAI 代码生成引擎能在分布式事务开发中发挥重要作用。它可以根据开发者的需求,快速生成与 Seata AT 模式相关的代码,如事务发起者、参与者的配置代码、业务逻辑代码等。
这不仅能减少开发者的重复劳动,避免手动编码可能出现的错误,还能让开发者更专注于业务逻辑的设计和优化,提高分布式事务开发的效率和质量。同时,飞算 JavaAI 生成的代码遵循规范的编码风格和最佳实践,有助于提升代码的可维护性。
二、实战环境准备
2.1 硬件与软件环境要求
要进行基于飞算 JavaAI 的 Seata AT 模式实战,需要满足一定的硬件和软件环境要求。
硬件方面,建议使用至少 4GB 内存的计算机,处理器为 Intel Core i5 及以上或同等性能的处理器,以保证开发和运行过程的流畅性。同时,需要有足够的存储空间,至少预留 20GB 以上的硬盘空间,用于安装相关软件和存储项目文件。
软件方面,操作系统可以是 Windows 10/11、Linux(如 Ubuntu 20.04)或 macOS。需要安装 JDK 8 及以上版本,确保 Java 环境正常。数据库可选用 MySQL 5.7 及以上版本,用于存储业务数据和 Seata 的相关信息。还需要安装 Maven 3.6 及以上版本,用于项目的依赖管理。此外,Seata 服务器需要下载 1.4.2 及以上版本,飞算 JavaAI 代码生成引擎也需要安装对应的版本。
2.2 相关工具的安装与配置
2.2.1 JDK 安装与配置
首先从 Oracle 官网或 OpenJDK 官网下载适合自己操作系统的 JDK 安装包。下载完成后,按照安装向导进行安装,选择合适的安装路径。
安装完成后,需要配置环境变量。在 Windows 系统中,右键 “此电脑”,选择 “属性”->“高级系统设置”->“环境变量”,在系统变量中新建 “JAVA_HOME”,值为 JDK 的安装路径。然后在 “Path” 变量中添加 “% JAVA_HOME%\bin”。配置完成后,打开命令提示符,输入 “java -version”,如果能显示 JDK 版本信息,则说明安装配置成功。
2.2.2 MySQL 安装与配置
从 MySQL 官网下载 MySQL 安装包,根据操作系统选择对应的版本。安装过程中,按照提示进行操作,设置 root 用户的密码。
安装完成后,启动 MySQL 服务。在 Windows 系统中,可以通过 “服务” 窗口找到 “MySQL” 服务并启动。然后使用命令行工具或 MySQL 客户端(如 Navicat)连接 MySQL,输入用户名和密码,如果能成功连接,则说明安装成功。
为了支持 Seata AT 模式,需要在 MySQL 中创建 Seata 所需的数据库和表,可以参考 Seata 官方文档中的 SQL 脚本进行创建。
2.2.3 Seata 服务器安装与配置
从 Seata 官网下载 Seata 服务器安装包,解压到指定目录。进入 Seata 安装目录下的 “conf” 文件夹,修改 “registry.conf” 文件,配置注册中心和配置中心。如果使用 Nacos 作为注册中心和配置中心,需要在文件中指定 Nacos 的地址、用户名和密码等信息。
然后修改 “file.conf” 文件,配置存储模式,如使用 MySQL 存储事务日志,需要在文件中配置 MySQL 的连接信息。配置完成后,进入 “bin” 目录,执行启动脚本(Windows 系统执行 “seata-server.bat”,Linux 或 macOS 系统执行 “seata-server.sh”),启动 Seata 服务器。
2.2.4 飞算 JavaAI 安装与配置
下载飞算 JavaAI 代码生成引擎的安装包,按照安装说明进行安装。安装完成后,启动引擎,进入配置界面,设置相关的参数,如 JDK 路径、Maven 路径等。还需要配置 Seata 相关的模板信息,以便生成符合 Seata AT 模式要求的代码。
2.3 项目工程的创建
打开 IDEA 或 Eclipse 等开发工具,创建一个新的 Maven 项目。在项目的 pom.xml 文件中,添加 Seata 相关的依赖,如 seata-all、spring-cloud-alibaba-seata 等,还需要添加 Spring Boot、Spring Cloud 等相关依赖,具体的依赖版本可以根据实际情况进行选择。
<dependencies>
<!-- Spring Boot 相关依赖 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>2.3.12.RELEASE</version>
</dependency>
<!-- Seata 相关依赖 -->
<dependency>
<groupId>io.seata</groupId>
<artifactId>seata-all</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-alibaba-seata</artifactId>
<version>2.2.6.RELEASE</version>
<exclusions>
<exclusion>
<groupId>io.seata</groupId>
<artifactId>seata-all</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- 其他依赖 -->
</dependencies>
配置完成后,刷新 Maven 依赖,确保依赖下载成功。
三、飞算 JavaAI 生成 Seata AT 模式基础代码
3.1 需求分析与提示词设计
本次实战将实现一个简单的分布式事务场景:用户下单,涉及订单服务和库存服务。当用户下单时,订单服务需要创建订单,库存服务需要扣减相应的库存,这两个操作需要在一个分布式事务中完成,要么都成功,要么都失败。
基于这个需求,我们需要飞算 JavaAI 生成以下代码:订单服务的 Controller、Service、Mapper 层代码,库存服务的 Controller、Service、Mapper 层代码,以及 Seata AT 模式相关的配置代码。
针对这些需求,设计的提示词如下:
“生成一个基于 Spring Boot 和 Seata AT 模式的分布式事务代码,包含订单服务和库存服务。订单服务需要提供创建订单的接口,接收用户 ID、商品 ID、购买数量等参数,调用订单 Service 创建订单;库存服务需要提供扣减库存的接口,接收商品 ID 和扣减数量参数,调用库存 Service 扣减库存。生成各服务的 Controller、Service、Mapper 层代码,以及 Seata 相关的配置类和配置文件。代码需要遵循 Java 编码规范,使用 MyBatis 操作数据库,包含必要的注释。”
3.2 基础代码生成过程
打开飞算 JavaAI 代码生成引擎,在输入框中输入上述提示词,然后点击生成按钮。引擎会根据提示词进行需求解析、代码生成规划等流程,然后生成相应的代码。
生成过程中,引擎会先分析提示词中的关键信息,确定需要生成的代码模块和功能。然后规划代码的结构,如订单服务的包结构为 com.example.order.controller、com.example.order.service、com.example.order.mapper 等,库存服务类似。接着,按照规划生成各个类的代码,包括类的定义、方法的实现、注解的使用等。同时,还会生成 Seata 的配置类,如数据源代理配置、事务扫描配置等,以及 application.yml 配置文件,包含 Seata 的服务组、注册中心等配置信息。
生成完成后,引擎会将代码按照包结构进行整理,方便开发者下载和导入到项目中。
3.3 生成代码的结构与说明
3.3.1 订单服务代码结构
- com.example.order.controller:OrderController 类,包含创建订单的接口方法,使用 @PostMapping 注解,接收请求参数,调用 OrderService 的创建订单方法。
- com.example.order.service:OrderService 接口和 OrderServiceImpl 实现类,OrderServiceImpl 中使用 @GlobalTransactional 注解标记分布式事务,调用 OrderMapper 插入订单信息,同时通过 Feign 调用库存服务的扣减库存接口。
- com.example.order.mapper:OrderMapper 接口和对应的 XML 映射文件,定义插入订单的方法。
- com.example.order.config:SeataConfig 类,配置数据源代理和事务扫描。
- application.yml:配置订单服务的端口、数据库连接信息、Seata 服务组等。
3.3.2 库存服务代码结构
- com.example.inventory.controller:InventoryController 类,包含扣减库存的接口方法,使用 @PostMapping 注解,接收请求参数,调用 InventoryService 的扣减库存方法。
- com.example.inventory.service:InventoryService 接口和 InventoryServiceImpl 实现类,实现扣减库存的逻辑,调用 InventoryMapper 更新库存数量。
- com.example.inventory.mapper:InventoryMapper 接口和对应的 XML 映射文件,定义更新库存的方法。
- com.example.inventory.config:SeataConfig 类,配置数据源代理和事务扫描。
- application.yml:配置库存服务的端口、数据库连接信息、Seata 服务组等。
这些代码中,OrderServiceImpl 类中的创建订单方法被 @GlobalTransactional 注解标记,表明这是一个分布式事务的发起者。在该方法中,先创建订单,然后通过 Feign 客户端调用库存服务的扣减库存接口,整个过程在一个分布式事务中进行。
四、Seata AT 模式配置与代码调整
4.1 注册中心与配置中心配置
Seata AT 模式需要注册中心来实现服务的发现和通信,配置中心用于管理 Seata 的配置信息。这里我们使用 Nacos 作为注册中心和配置中心。
首先,在 Nacos 中创建 Seata 的配置集。登录 Nacos 控制台,进入配置管理页面,点击 “+” 号添加配置。Data ID 设置为 “seataServer.properties”,Group 设置为 “SEATA_GROUP”,配置内容如下:
# 存储模式,使用数据库
store.mode=db
# 数据库连接信息
store.db.datasource=druid
store.db.dbType=mysql
store.db.driverClassName=com.mysql.cj.jdbc.Driver
store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true
store.db.user=root
store.db.password=123456
store.db.minConn=5
store.db.maxConn=30
store.db.globalTable=global_table
store.db.branchTable=branch_table
store.db.lockTable=lock_table
store.db.queryLimit=100
store.db.executorCorePoolSize=16
store.db.executorMaximumPoolSize=32
store.db.executorKeepAliveTime=30000
然后,修改订单服务和库存服务的 application.yml 配置文件,配置 Nacos 注册中心和配置中心:
spring:
cloud:
nacos:
discovery:
server-addr: 127.0.0.1:8848 # Nacos 注册中心地址
config:
server-addr: 127.0.0.1:8848 # Nacos 配置中心地址
group: SEATA_GROUP
data-id: seataServer.properties
4.2 数据源代理配置
Seata AT 模式需要对数据源进行代理,以便实现事务的回滚和提交。飞算 JavaAI 已经生成了 SeataConfig 类,我们需要对其进行检查和调整,确保数据源代理配置正确。
SeataConfig 类的代码如下:
@Configuration
public class SeataConfig {
@Bean
@ConfigurationProperties(prefix = "spring.datasource")
public DataSource dataSource() {
return new DruidDataSource();
}
@Bean
public DataSourceProxy dataSourceProxy(DataSource dataSource) {
return new DataSourceProxy(dataSource);
}
@Bean
public SqlSessionFactory sqlSessionFactoryBean(DataSourceProxy dataSourceProxy) throws Exception {
SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
sqlSessionFactoryBean.setDataSource(dataSourceProxy);
sqlSessionFactoryBean.setMapperLocations(new PathMatchingResourcePatternResolver()
.getResources("classpath*:mapper/*.xml"));
return sqlSessionFactoryBean.getObject();
}
}
这个配置类创建了数据源、数据源代理和 SqlSessionFactory,确保 MyBatis 使用数据源代理来操作数据库,从而让 Seata 能够拦截数据库操作,生成 undo log 等。
4.3 事务分组配置
事务分组是 Seata 中用于区分不同业务场景的事务配置的重要概念。需要在订单服务和库存服务的 application.yml 中配置事务分组:
seata:
tx-service-group: my_test_tx_group # 事务分组名称
service:
vgroup-mapping:
my_test_tx_group: default # 事务分组对应的服务组
registry:
type: nacos
nacos:
server-addr: 127.0.0.1:8848
application: seata-server
同时,在 Seata 服务器的 registry.conf 中也需要配置对应的事务分组映射,确保服务能够正确找到 Seata 服务器。
4.4 代码中的事务注解与调整
飞算 JavaAI 生成的 OrderServiceImpl 类中已经使用了 @GlobalTransactional 注解,我们需要检查该注解的使用是否正确。@GlobalTransactional 注解用于标记全局事务的发起者,默认的超时时间是 60 秒,可以根据实际情况进行调整,如 @GlobalTransactional (timeoutMills = 300000)。
另外,需要确保 Feign 调用库存服务的接口能够正确传递事务上下文。Seata 会自动在 Feign 调用中传递事务 ID,不需要额外的代码调整,但需要确保 Feign 客户端的配置正确,能够正常调用库存服务。
如果在实际测试中发现事务无法正常生效,需要检查 @GlobalTransactional 注解是否添加在正确的方法上,该方法是否是整个分布式事务的入口,以及事务分组等配置是否一致。
五、分布式事务实战案例实现
5.1 数据库表设计与初始化
根据订单服务和库存服务的需求,设计以下数据库表:
5.1.1 订单表(t_order)
CREATE TABLE `t_order` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '订单ID',
`user_id` bigint(20) NOT NULL COMMENT '用户ID',
`product_id` bigint(20) NOT NULL COMMENT '商品ID',
`count` int(11) NOT NULL COMMENT '购买数量',
`money` decimal(10,2) NOT NULL COMMENT '订单金额',
`status` int(11) NOT NULL COMMENT '订单状态:0-创建中,1-已完成,2-已取消',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';
5.1.2 库存表(t_inventory)
CREATE TABLE `t_inventory` (
`id` bigint(20</doubaocanvas>