提示词基础:如何让大模型 “复盘” 并优化自身输出
**
1. 前言
在使用大模型的过程中,我们经常会遇到这样的情况:大模型给出的输出结果不符合预期,比如回答不够准确、内容不够全面,或者逻辑不够清晰。这时候,仅仅重新提问往往效果不佳。而让大模型对自己的输出进行 “复盘”,再根据复盘结果优化输出,是解决这个问题的有效方法。
要实现大模型的复盘与输出优化,关键在于设计合适的提示词。本文将从基础概念开始,详细讲解如何通过提示词引导大模型完成复盘,以及如何基于复盘结果进一步优化输出,帮助大家更好地利用大模型提升工作与学习效率。
2. 大模型 “复盘” 的基础认知
2.1 什么是大模型 “复盘”
大模型 “复盘”,简单来说,就是让大模型回顾自己之前给出的输出内容,分析其中存在的问题。比如,判断回答是否偏离了用户的核心需求、是否存在知识点错误、是否有遗漏的重要信息,或者表达是否不够简洁易懂。
举个例子,如果你让大模型 “解释什么是人工智能”,大模型给出的回答只提到了机器学习,没有涉及深度学习、自然语言处理等关键分支。这时候让大模型复盘,它就需要发现自己回答中 “遗漏重要分支” 这个问题。
2.2 为什么需要让大模型 “复盘”
首先,大模型的输出并非总能一次达标。由于训练数据的局限性、对用户需求理解的偏差等原因,初次输出的结果往往存在不足。
其次,通过复盘可以让大模型更精准地匹配用户需求。在复盘过程中,大模型会重新审视用户的提问意图,对比自身输出与需求之间的差距,从而为后续的优化提供方向。
最后,复盘能帮助用户减少重复提问的成本。如果不进行复盘,用户可能需要多次调整提问方式才能得到满意结果;而通过提示词引导大模型复盘,大模型可以自主发现问题并优化,节省用户时间。
2.3 大模型 “复盘” 的核心前提
要让大模型顺利完成复盘,有两个核心前提:
第一,明确的复盘目标。在提示词中,需要告诉大模型具体要从哪些方面进行复盘,比如 “检查回答是否有知识点错误”“判断内容是否覆盖了提问中的所有要点” 等。如果目标不明确,大模型的复盘可能会流于形式,无法发现关键问题。
第二,完整的上下文信息。在提示词中,需要包含之前的提问内容和大模型的初次输出结果。如果缺少上下文,大模型无法回顾自己的输出过程,也就无法进行有效的复盘。
3. 引导大模型 “复盘” 的提示词设计基础
3.1 提示词的核心构成要素
一个能有效引导大模型复盘的提示词,需要包含以下几个核心要素:
- 身份定位:告诉大模型在复盘中扮演的角色,比如 “你现在是一个专业的内容审核员,需要对自己之前的输出进行严格检查”。明确的身份定位能让大模型更有针对性地进行复盘。
- 复盘对象:清晰指出需要复盘的内容,即之前的提问和大模型的初次输出。可以直接将这两部分内容复制到提示词中,确保大模型能准确获取复盘对象。
- 复盘维度:列出具体的复盘方向,这是提示词设计的关键。常见的复盘维度包括需求匹配度、知识点准确性、内容完整性、逻辑清晰度、表达简洁度等。
- 输出要求:告诉大模型复盘结果需要以什么形式呈现,比如 “先指出存在的问题,再说明问题对应的具体位置,最后给出改进建议”。明确的输出要求能让复盘结果更有条理,方便后续优化。
3.2 不同复盘维度的提示词示例
3.2.1 需求匹配度复盘提示词
需求匹配度复盘,主要是检查大模型的输出是否准确理解并满足了用户的核心需求。示例如下:
“你现在需要对自己之前的输出进行需求匹配度复盘。首先,回顾用户的提问:‘请推荐 3 款适合学生使用的平价笔记本电脑,预算在 4000-5000 元之间,主要用于日常学习和简单的编程任务’。然后,查看你之前的输出:‘推荐以下 3 款笔记本电脑:1. 某品牌 A 型号,价格 6000 元,适合图形设计;2. 某品牌 B 型号,价格 3500 元,适合办公;3. 某品牌 C 型号,价格 5500 元,适合游戏’。请你判断:输出是否满足了用户‘预算 4000-5000 元’‘适合学生日常学习和简单编程’的核心需求?如果没有,指出具体不匹配的地方。”
3.2.2 知识点准确性复盘提示词
知识点准确性复盘,重点是检查输出内容中是否存在事实错误、概念混淆等问题。示例如下:
“你需要对之前关于‘牛顿运动定律’的输出进行知识点准确性复盘。用户提问:‘请简要说明牛顿第一定律和牛顿第二定律的区别’。你的输出:‘牛顿第一定律指出,物体在不受力的情况下会保持匀速直线运动状态;牛顿第二定律指出,物体的加速度与所受的力成正比,与物体的质量成反比,公式为 F=ma’。请检查:输出中的知识点是否准确?是否存在概念错误或表述偏差?如果有,具体说明错误之处。”
3.2.3 内容完整性复盘提示词
内容完整性复盘,主要是确认输出是否覆盖了用户提问中涉及的所有要点。示例如下:
“用户提问:‘请从使用步骤和注意事项两方面,说明如何使用打印机打印文档’。你的输出:‘使用打印机打印文档的步骤:1. 将文档在电脑上打开;2. 点击 “文件” 选项,选择 “打印”;3. 选择对应的打印机,点击 “确定” 开始打印’。请你进行内容完整性复盘:输出是否包含了用户要求的‘使用步骤’和‘注意事项’两方面内容?如果有缺失,指出缺失的部分。”
3.2.4 逻辑清晰度复盘提示词
逻辑清晰度复盘,是检查输出内容的结构是否合理、各部分之间的衔接是否顺畅、是否存在逻辑混乱的情况。示例如下:
“你之前关于‘如何备考英语四级’的输出:‘备考英语四级需要背单词,因为单词是基础。然后可以做真题,真题能帮助熟悉题型。听力部分很重要,每天要听 30 分钟。背单词可以用 APP,也可以用单词书。做真题的时候要分析错题,总结答题技巧’。请进行逻辑清晰度复盘:输出的内容结构是否合理?各部分之间的逻辑衔接是否顺畅?是否存在逻辑混乱或顺序不当的问题?如果有,具体说明。”
3.3 提示词设计的注意事项
- 语言要简洁直白:避免使用复杂的句式或生僻的词汇,确保大模型能快速理解提示词的意图。比如,不要说 “请对先前输出的内容进行多维度的审视与评估”,而要说 “请从几个方面检查之前的输出”。
- 避免模糊表述:在设定复盘维度和输出要求时,要具体、明确,不能模糊不清。比如,不要说 “请检查输出是否有问题”,而要说 “请检查输出是否有知识点错误和内容遗漏”。
- 控制提示词长度:虽然需要包含完整的上下文和复盘要求,但也不能让提示词过长,以免大模型抓不住重点。建议将提示词控制在合理范围内,优先保留核心信息。
4. 基于复盘结果优化大模型输出的方法
4.1 直接基于复盘问题给出优化提示词
如果大模型在复盘中已经明确指出了输出存在的问题,比如 “回答遗漏了用户要求的‘注意事项’部分”“某个知识点表述错误” 等,那么可以直接基于这些问题设计优化提示词,让大模型针对性地修改。
4.1.1 针对 “内容缺失” 的优化提示词示例
假设大模型复盘后指出:“之前关于‘打印机使用’的输出,只讲了使用步骤,没有讲注意事项,存在内容缺失”。对应的优化提示词可以是:“请根据之前的复盘结果,补充打印机使用的注意事项部分。注意事项需要包括:1. 打印前检查打印机是否有足够的纸张和墨水;2. 不要在打印机工作时打开机盖;3. 打印完成后及时关闭打印机电源。补充后的内容要与之前的使用步骤部分衔接顺畅。”
4.1.2 针对 “知识点错误” 的优化提示词示例
如果大模型复盘发现:“之前关于‘牛顿第一定律’的输出有误,牛顿第一定律不仅指出物体不受力时保持匀速直线运动状态,还包括静止状态”。优化提示词可以是:“请修正之前关于牛顿第一定律的错误表述,正确的内容应该是:‘牛顿第一定律指出,物体在不受力的情况下,会保持静止状态或匀速直线运动状态,直到有外力迫使它改变这种状态’。修正后的回答要保持语言简洁,与牛顿第二定律的区别部分衔接自然。”
4.1.3 针对 “逻辑混乱” 的优化提示词示例
若大模型复盘认为:“之前‘英语四级备考’的输出逻辑混乱,背单词、做真题、练听力的内容穿插在一起,没有明确的结构”。优化提示词可以是:“请按照‘背单词 - 做真题 - 练听力’的顺序,重新组织‘英语四级备考’的输出内容。每个部分需要包含具体的方法,比如背单词可以用 APP 或单词书,做真题要分析错题,练听力每天 30 分钟。重新组织后的内容要结构清晰,逻辑连贯。”
4.2 多轮复盘与优化的操作流程
在实际使用中,有时候一次复盘和优化无法达到理想效果,这时候就需要进行多轮复盘与优化。具体流程如下:
- 第一轮:引导大模型进行初次复盘,得到复盘结果;根据复盘结果设计优化提示词,让大模型完成第一次优化。
- 第二轮:将第一次优化后的输出作为新的复盘对象,再次设计复盘提示词,让大模型检查优化后的内容是否还有问题。比如,“请对第一次优化后的‘英语四级备考’内容进行复盘,检查是否还有逻辑不清晰的地方,或者是否有遗漏的备考要点”。
- 第三轮:如果第二次复盘发现新的问题,继续基于问题设计优化提示词,直到大模型的输出满足预期需求。
4.2.1 多轮复盘与优化的示例
以 “推荐学生平价笔记本电脑” 为例:
- 初次提问:“推荐 3 款适合学生使用的平价笔记本电脑,预算 4000-5000 元,用于日常学习和简单编程”。
- 初次输出:“1. 某品牌 A 型号,价格 6000 元,适合图形设计;2. 某品牌 B 型号,价格 3500 元,适合办公;3. 某品牌 C 型号,价格 5500 元,适合游戏”。
- 第一轮复盘提示词:“检查输出是否满足‘预算 4000-5000 元’‘适合学生学习和简单编程’的需求,指出不匹配的地方”。
- 第一轮复盘结果:“1. 某品牌 A 型号价格 6000 元,超出预算;2. 某品牌 B 型号价格 3500 元,低于预算下限,且未说明是否适合编程;3. 某品牌 C 型号价格 5500 元,超出预算,且适合游戏,不符合学习和编程需求”。
- 第一轮优化提示词:“根据复盘结果,重新推荐 3 款笔记本电脑,要求:1. 预算在 4000-5000 元之间;2. 明确说明适合学生日常学习和简单编程的原因,比如处理器型号、内存大小等;3. 每个型号给出具体价格”。
- 第一轮优化输出:“1. 某品牌 D 型号,价格 4500 元,处理器为 i5-1235U,内存 16GB,适合日常学习和简单编程;2. 某品牌 E 型号,价格 4800 元,处理器为 R5-5625U,内存 16GB,适合编程任务;3. 某品牌 F 型号,价格 4200 元,处理器为 i3-1215U,内存 8GB,适合基础学习”。
- 第二轮复盘提示词:“检查优化后的输出是否满足所有需求:预算是否在 4000-5000 元,是否明确说明适合学习和编程的原因,是否有 3 个型号。同时检查是否有其他问题,比如内存大小是否足够应对简单编程”。
- 第二轮复盘结果:“1. 3 个型号价格均在预算范围内,且都说明了适合学习和编程的原因,满足基本需求;2. 某品牌 F 型号内存为 8GB,对于简单编程(如 Python)基本足够,但可能在运行多个程序时不够流畅,建议补充说明内存的适用场景”。
- 第二轮优化提示词:“针对某品牌 F 型号,补充说明‘内存 8GB 适合基础 Python 编程,若需要同时运行多个编程软件,建议选择内存 16GB 的型号’。其他部分保持不变,确保输出信息更全面”。
- 第二轮优化输出:“1. 某品牌 D 型号,价格 4500 元,处理器为 i5-1235U,内存 16GB,适合日常学习和简单编程;2. 某品牌 E 型号,价格 4800 元,处理器为 R5-5625U,内存 16GB,适合编程任务;3. 某品牌 F 型号,价格 4200 元,处理器为 i3-1215U,内存 8GB,适合基础 Python 编程,若需要同时运行多个编程软件,建议选择内存 16GB 的型号”。
- 第三轮复盘:检查第二轮优化输出,确认无问题,优化完成。
4.3 优化过程中的关键技巧
- 逐步聚焦问题:在多轮优化中,每次只针对 1-2 个核心问题进行修改,不要一次提出过多要求。比如,第一轮优化先解决 “预算超出” 的问题,第二轮再解决 “内存说明不全面” 的问题,这样能让大模型更专注,优化效果更好。
- 保留有效内容:在优化提示词中,要明确告诉大模型哪些内容不需要修改,只需要优化有问题的部分。比如,“某品牌 D 型号和 E 型号的描述无需修改,只需要补充某品牌 F 型号的内存适用场景说明”,避免大模型重复劳动或修改正确内容。
- 参考优质示例:如果对优化后的输出有明确的格式或内容要求,可以在提示词中给出优质示例。比如,“优化后的型号推荐格式参考:‘某品牌 X 型号,价格 XXX 元,核心配置:处理器 XX、内存 XX,适合学习和编程的原因:XX’”,帮助大模型更好地理解优化方向。
5. 不同场景下的大模型 “复盘” 与优化实践
5.1 学习场景:知识点讲解的复盘与优化
在学习场景中,用户常需要大模型讲解知识点,比如 “解释微积分中的导数概念”。此时复盘的重点是知识点准确性、表述易懂性,优化则需让讲解更贴合用户的知识水平。
5.1.1 初次提问与输出
提问:“请用简单的语言解释微积分中的导数概念,适合高中刚毕业的学生理解”。
输出:“导数是微积分中的重要概念,它表示函数在某一点的变化率。通过导数可以计算函数的切线斜率,在物理学中也有应用,比如速度是位移的导数”。
5.1.2 复盘提示词与结果
复盘提示词:“检查上述关于导数概念的输出:1. 是否准确解释了‘变化率’的含义?2. 是否用高中刚毕业学生能理解的例子辅助说明?3. 是否存在表述模糊的地方?”
复盘结果:“1. 没有具体解释‘变化率’的含义,高中刚毕业学生可能不清楚‘变化率’指什么;2. 没有给出简单的例子,比如通过具体函数说明导数;3. ‘切线斜率’的表述没有进一步解释,学生可能不理解导数与切线斜率的关系”。
5.1.3 优化提示词与结果
优化提示词:“根据复盘结果,重新解释导数概念:1. 用‘比如汽车行驶时速度的变化’这样的例子解释‘变化率’;2. 举一个具体函数(如 y=x²),说明在某一点(如 x=2)的导数如何计算,不用复杂公式;3. 用‘切线斜率’的通俗解释,比如‘函数图像在某一点的切线倾斜程度’。整体语言要简单,符合高中刚毕业学生的理解水平”。
优化输出:“导数可以理解为函数在某一点的‘变化快慢’,也就是变化率。比如汽车行驶时,每一秒速度增加多少,这个‘速度的变化快慢’就类似导数的概念。以简单的函数 y=x² 为例,当 x=2 时,y=4;如果 x 稍微增加一点,比如变成 2.1,y 就变成 4.41,此时 y 的增加量是 0.41,x 的增加量是 0.1,用 0.41 除以 0.1 得到 4.1,这个数值就接近 x=2 时的导数(实际导数是 4)。另外,导数也等于函数图像在这一点的切线斜率,比如 y=x² 在 x=2 处的切线,它的倾斜程度就是这一点的导数,斜率越大,说明函数在这一点的变化越快。这样的解释能让高中刚毕业的学生更容易理解导数的核心含义。
5.2 工作场景:工作报告撰写的复盘与优化
在工作场景中,员工常需要大模型协助撰写工作报告,比如 “撰写一份月度销售工作报告,包含本月销售数据、环比变化、存在问题及下月计划”。此时复盘重点是内容完整性、数据准确性和逻辑连贯性,优化需让报告更符合工作汇报的正式要求。
5.2.1 初次提问与输出
提问:“撰写一份月度销售工作报告,包含本月销售数据、环比变化、存在问题及下月计划,本公司本月销售额为 50 万元,上月销售额为 40 万元”。
输出:“本月销售情况还不错,销售额 50 万元,比上月多了 10 万元。存在一些问题,下月会好好改进,争取卖得更好”。
5.2.2 复盘提示词与结果
复盘提示词:“检查上述月度销售工作报告输出:1. 是否包含‘本月销售数据、环比变化、存在问题及下月计划’所有要求内容?2. 数据表述是否准确规范?3. 整体结构是否符合工作报告的正式性要求?”
复盘结果:“1. 缺少‘存在问题’的具体内容和‘下月计划’的详细措施;2. 环比变化只说了增加金额,未计算环比增长率(10÷40×100%=25%),数据表述不规范;3. 语言过于口语化,如‘还不错’‘好好改进’‘卖得更好’,不符合工作报告正式性要求”。
5.2.3 优化提示词与结果
优化提示词:“根据复盘结果,重新撰写月度销售工作报告:1. 补充‘存在问题’,如‘部分产品库存不足导致订单流失,销售人员跟进客户不及时’;2. 补充‘下月计划’,如‘提前备货确保库存充足,加强销售人员培训提升跟进效率’;3. 计算并补充环比增长率,规范数据表述;4. 语言使用正式书面语,结构分点清晰”。
优化输出:“# 月度销售工作报告
一、本月销售数据
本月公司销售额为 50 万元,涵盖 A、B、C 三类产品,其中 A 产品销售额 20 万元,B 产品 18 万元,C 产品 12 万元。
二、环比变化
上月销售额为 40 万元,本月销售额环比增长 10 万元,环比增长率为 25%(计算公式:(本月销售额 - 上月销售额)÷ 上月销售额 ×100% =(50-40)÷40×100% =25%),整体销售呈上升趋势。
三、存在问题
- 部分产品(如 B 产品)库存不足,本月有 5 笔订单因缺货取消,影响销售额;
- 3 名销售人员对客户跟进不及时,平均跟进间隔超过 3 天,导致部分潜在客户流失。
四、下月计划
- 库存管理:提前与生产部门沟通,针对 B 产品备货 300 件,确保库存能满足下月销售需求;
- 人员管理:组织销售人员培训,要求客户跟进间隔缩短至 1 天内,每周提交跟进记录,提升客户转化率,目标下月销售额突破 55 万元”。
5.3 创作场景:短文写作的复盘与优化
在创作场景中,用户可能需要大模型撰写短文,比如 “写一篇关于‘秋天的公园’的短文,要求有具体景物描写,突出秋天特色,字数 300 字左右”。此时复盘重点是景物描写丰富度、主题契合度和语言生动性,优化需让短文更具画面感。
5.3.1 初次提问与输出
提问:“写一篇关于‘秋天的公园’的短文,要求有具体景物描写,突出秋天特色,字数 300 字左右”。
输出:“秋天的公园很好看,有很多树,叶子都变颜色了。还有人在公园里玩,大家都很开心。秋天的公园真不错,让人喜欢”。
5.3.2 复盘提示词与结果
复盘提示词:“检查上述‘秋天的公园’短文输出:1. 是否有具体的景物描写,如特定树木、花朵、地面景象等?2. 是否突出秋天‘树叶变色、气候凉爽、果实成熟’等特色?3. 字数是否接近 300 字,语言是否生动?”
复盘结果:“1. 没有具体景物描写,仅提到‘很多树,叶子变颜色’,未说明树的种类(如枫树、银杏树)、叶子颜色变化(如变红、变黄);2. 未体现秋天‘气候凉爽、果实成熟’等特色,也没有描写公园内其他秋天相关景物;3. 字数不足 100 字,语言平淡,如‘很好看’‘真不错’,缺乏生动性”。
5.3.3 优化提示词与结果
优化提示词:“根据复盘结果,重新撰写‘秋天的公园’短文:1. 加入具体景物描写,如‘金黄的银杏树、火红的枫树、掉落的梧桐叶、挂着果实的山楂树’;2. 体现秋天特色,如‘秋风凉爽、阳光柔和、人们穿薄外套’;3. 语言使用比喻、拟人等修辞手法,如‘银杏叶像小扇子’‘枫叶像火焰’,字数控制在 280-320 字之间”。
优化输出:“# 秋天的公园
秋日的阳光透过云层,柔和地洒在公园的每一个角落。走进公园,最先映入眼帘的是那片银杏树,金黄的叶子像一把把小巧的扇子,风一吹,便慢悠悠地飘落在地上,铺成一条金色的小路。不远处的枫树林更显热烈,一片片枫叶红得似火焰,在阳光下格外耀眼,吸引着游客驻足拍照。
路边的梧桐叶也换了新装,从翠绿变成深黄,偶尔有几片随风旋转着落下,像是在跳一支优美的舞蹈。山楂树上挂满了红彤彤的果实,像一串串小灯笼,让人忍不住想伸手摘一颗。
秋风拂过脸颊,带着一丝凉爽,公园里的人们穿着薄外套,有的在树下散步聊天,有的带着孩子追逐嬉戏。这样充满秋意的公园,每一处景物都让人沉醉,让人深深爱上这秋日的美好。全文共 312 字”。
6. 大模型 “复盘” 与优化的常见问题及解决办法
6.1 问题一:大模型复盘时遗漏关键问题
6.1.1 问题表现
在引导大模型复盘时,大模型只发现了部分表面问题,比如只指出内容缺失,却没发现隐藏的知识点错误;或者只注意到逻辑混乱,忽略了语言表达不规范的问题。
6.1.2 解决办法
- 细化复盘维度:在提示词中把复盘维度拆分成更具体的子项,比如将 “内容检查” 拆分为 “内容完整性(是否缺子项)、知识点准确性(是否有事实错误)、数据准确性(是否有计算错误)”,让大模型按子项逐一检查,减少遗漏。
示例提示词:“请从以下子项逐一复盘输出:1. 内容完整性:是否包含‘本月销售数据、环比变化’的所有子项(如数据分类、计算过程);2. 知识点准确性:是否有与销售常识不符的表述;3. 数据准确性:销售额、增长率计算是否正确”。
- 增加 “反向提问”:在提示词末尾加入反向提问,如 “除了以上维度,是否还有其他影响输出质量的问题?请补充说明”,引导大模型主动挖掘隐藏问题。
6.2 问题二:大模型优化后仍不符合预期
6.2.1 问题表现
根据复盘结果给出优化提示词后,大模型优化后的输出仍存在问题,比如补充了内容但逻辑更混乱,修正了数据却遗漏了其他要求。
6.2.2 解决办法
- 明确 “保留正确内容”:在优化提示词中明确指出哪些内容无需修改,避免大模型在优化时破坏正确部分。
示例提示词:“优化时保留‘本月销售额 50 万元、环比增长率 25%’的正确数据表述,仅补充存在问题和下月计划的具体内容,且补充内容需与已有部分逻辑衔接”。
- 分步骤优化:若存在多个优化需求,将优化任务拆分成步骤,让大模型逐步完成。
示例提示词:“第一步,补充存在问题的具体内容;第二步,基于存在问题补充下月计划的详细措施;第三步,检查整体语言是否符合正式书面语要求,若不符合进行修改”。
6.3 问题三:大模型复盘输出格式混乱
6.3.1 问题表现
大模型复盘结果没有条理,问题和建议混在一起,没有明确的分类,不方便后续提取关键信息进行优化。
6.3.2 解决办法
- 规定复盘输出格式:在提示词中明确要求复盘结果按 “问题类型 - 具体问题 - 改进建议” 的格式呈现,分点列出。
示例提示词:“复盘结果按以下格式输出:
- 问题类型 1(如内容缺失):
-
- 具体问题:缺少下月计划的详细措施;
-
- 改进建议:补充下月在库存和人员管理方面的具体计划。
- 问题类型 2(如数据不规范):
-
- 具体问题:未计算环比增长率;
-
- 改进建议:按公式(本月 - 上月)÷ 上月 ×100% 计算并补充环比增长率”。
- 给出格式示例:在提示词中提供一个简单的格式示例,让大模型参考。
示例提示词:“复盘结果格式参考:
【问题类型】内容完整性
【具体问题】未提及存在问题的具体表现,如哪些环节出现问题
【改进建议】列举 1-2 个具体的销售问题,如库存不足、客户跟进不及时
请按此格式,针对输出的其他问题进行复盘”。
7. 提升大模型 “复盘” 与优化效率的实用工具与辅助技巧
7.1 实用工具推荐
7.1.1 提示词模板工具
推荐使用 “PromptBase”“豆包提示词模板库”,这类工具提供了多种场景下的复盘提示词模板,比如学习场景的知识点复盘模板、工作场景的报告复盘模板。用户只需根据实际需求修改模板中的关键信息(如提问内容、初次输出),就能快速生成有效的复盘提示词,节省设计提示词的时间。
7.1.2 上下文管理工具
对于需要多轮复盘与优化的场景,推荐使用 “Notion”“飞书文档”。这类工具可以清晰记录每一轮的提问、输出、复盘结果和优化内容,方便用户追溯复盘过程,同时也能将完整的上下文信息快速复制到提示词中,避免因遗漏上下文导致复盘效果不佳。
7.2 辅助技巧
7.2.1 预设复盘维度清单
提前整理不同场景下的复盘维度清单,比如:
- 通用场景:内容完整性、逻辑清晰度、语言规范性;
- 数据相关场景:数据准确性、数据完整性、计算正确性;
- 创作场景:主题契合度、描写丰富度、语言生动性。
在需要复盘时,直接从清单中选择对应的维度,快速明确复盘方向,避免临时思考导致维度遗漏。
7.2.2 标记关键信息
在初次提问和输出中,用加粗、下划线等方式标记关键信息,比如 “本月销售额为50 万元,上月销售额为40 万元”“要求包含本月销售数据、环比变化、存在问题及下月计划”。这样能让大模型在复盘中更快速地捕捉核心信息,减少因忽略关键信息导致的复盘偏差。
7.2.3 控制每轮优化目标数量
每轮优化只设定 1-2 个核心目标,比如第一轮优化仅解决 “内容缺失” 问题,第二轮优化解决 “语言不规范” 问题。避免一次设定过多目标,导致大模型注意力分散,优化效果下降。同时,在优化提示词中明确标注本轮优化目标,如 “本轮优化核心目标:补充存在问题的具体内容”。
8. 实际案例分析:从问题输出到优质结果的完整复盘优化过程
8.1 案例背景
用户需求:让大模型撰写一份 “小学生消防安全知识手册” 的前言,要求包含消防安全的重要性、手册内容简介(如火灾预防、逃生方法),语言简单易懂,适合小学生阅读,字数 200 字左右。
初次输出:“消防安全很重要,大家都要注意。这本手册里有一些知识,能帮助大家保护自己。希望大家好好看,学会保护自己”。
8.2 第一轮复盘与优化
8.2.1 复盘提示词
“请从以下维度复盘上述前言输出:1. 内容完整性:是否包含‘消防安全的重要性、手册内容简介’?2. 语言适配性:是否简单易懂,符合小学生阅读水平?3. 字数:是否接近 200 字?”
8.2.2 复盘结果
“1. 内容完整性:未详细说明‘消防安全的重要性’(如火灾的危害),未提及‘手册内容简介’(如火灾预防、逃生方法);2. 语言适配性:语言过于笼统,如‘一些知识’‘好好看’,缺少小学生能理解的具体表述;3. 字数:不足 100 字,未达到 200 字左右要求”。
8.2.3 优化提示词
“根据复盘结果优化前言:1. 补充‘消防安全的重要性’,用‘火灾会烧毁房屋、威胁生命’这样简单的表述;2. 补充‘手册内容简介’,说明包含‘如何预防火灾(如不玩火、正确使用电器)、火灾逃生方法(如弯腰捂鼻、走安全出口)’;3. 语言使用短句和简单词汇,符合小学生阅读水平;4. 控制字数在 180-220 字”。
8.2.4 第一轮优化输出
“# 小学生消防安全知识手册前言
小朋友们,消防安全特别重要!火灾很危险,它可能会烧毁我们的家,还会威胁到大家的生命安全,所以我们一定要学会消防安全知识。
这本《小学生消防安全知识手册》里,有很多实用的内容。比如告诉大家怎么预防火灾,像不能随便玩火,使用电器要先问爸爸妈妈;还有火灾发生时的逃生方法,比如要弯腰用湿毛巾捂住鼻子,沿着安全出口逃跑,不要坐电梯。
希望小朋友们认真阅读这本手册,把消防安全知识记在心里,保护好自己和身边的人。全文共 203 字”。
8.3 第二轮复盘与优化
8.3.1 复盘提示词
“检查第一轮优化后的前言:1. 是否有更贴近小学生生活的例子,比如在学校、家里的具体预防行为?2. 语言是否更生动,比如使用简单的比喻?”
8.3.2 复盘结果
“1. 缺少贴近小学生生活的具体例子,如在学校‘不玩教室里的插座’、在家里‘不随便碰厨房的打火机’;2. 语言较平实,没有使用简单比喻,吸引力不足”。
8.3.3 优化提示词
“根据复盘结果进一步优化:1. 在‘火灾预防’部分补充学校和家里的具体例子,如‘在学校不玩教室里的插座,在家里不碰厨房的打火机’;2. 加入简单比喻,如把‘湿毛巾捂鼻’比作‘给鼻子戴一个保护罩’;3. 保留其他正确内容,字数控制在 200 字左右”。
8.3.4 第二轮优化输出
“# 小学生消防安全知识手册前言
小朋友们,消防安全就像我们的‘安全小卫士’,特别重要!火灾很危险,它可能会烧毁我们温暖的家,还会威胁到大家的生命安全,所以我们一定要学会消防安全知识。
这本《小学生消防安全知识手册》里,有很多实用的内容。比如告诉大家怎么预防火灾,在学校不能玩教室里的插座,在家里不要随便碰厨房的打火机;还有火灾发生时的逃生方法,要弯腰用湿毛巾捂住鼻子,就像给鼻子戴了一个‘保护罩’,然后沿着安全出口逃跑,千万不要坐电梯。
希望小朋友们认真阅读这本手册,把消防安全知识记在心里,保护好自己和身边的人。全文共 215 字”。
8.4 案例总结
通过两轮复盘与优化,从最初内容缺失、语言笼统的输出,最终得到了内容完整、语言生动且符合小学生阅读水平的前言。核心在于每轮明确复盘维度和优化目标,逐步完善输出内容,同时结合小学生的认知特点调整语言表达,让优化后的结果更贴合用户需求。