- 博客(122)
- 收藏
- 关注
原创 【人工智能】提示词技巧:如何用“少样本学习(few-shot)”让大模型快速上手新任务
少样本学习(Few-Shot Learning)是一种让大模型快速掌握新任务的高效方法。通过在提示词中提供2-5个典型示例,帮助模型理解任务规则、输出格式和质量标准。这种方法特别适用于有固定格式要求、明确判断标准或专业领域的任务。 设计有效的少样本提示词需注意:1)选择典型、一致且简洁的示例;2)构建清晰的任务说明-示例展示-新任务指令结构;3)控制示例数量在2-5个;4)确保示例与新任务类型匹配。 实际应用中,可结合角色设定、思维链等技巧提升效果。当遇到复杂任务时,可将其拆分为子步骤并分别设计示例;遇到多
2025-09-05 17:28:34
410
原创 【人工智能】实战:用“角色+任务+约束”三段式提示词提升输出质量
摘要: “角色+任务+约束”三段式提示词框架能显著提升大模型输出质量。角色模块明确身份(如“资深Python程序员”),确保专业视角;任务模块定义具体目标(如“编写数据可视化代码”),避免需求模糊;约束模块设定规则(如“代码需含注释”),保障格式与边界。通过案例演示(技术开发、教育培训等)可见,该框架能精准引导大模型输出贴合场景的内容,解决风格偏离、遗漏关键点等问题。优化时需注意:角色与任务匹配、约束分层拆分、结合思维链分步推理,并动态调整变量适配多场景需求。
2025-09-05 17:11:32
726
原创 【人工智能】提示词进阶:用“思维链(CoT)”让大模型更擅长逻辑推理
本文介绍了"思维链(CoT)"提示词技术,这是一种让大语言模型通过分步推理解决复杂问题的方法。文章首先阐述了CoT的工作原理,即通过引导模型展示完整的思考过程,模拟人类的逻辑推理方式,从而减少错误并提高准确性。 在核心内容部分,文章详细讲解了三种CoT提示词设计方法:基础方法要求明确展示思考步骤;进阶技巧一提供示例引导推理;进阶技巧二将复杂任务拆分为子步骤。同时提供了数学计算、代码调试、业务分析和逻辑推理四个场景的实战案例。 文章还针对使用中常见问题(如跳过步骤、逻辑混乱等)给出解决方案
2025-09-05 16:57:29
504
原创 【人工智能】提升提示词效果的10个黄金技巧:从“能用”到“好用”
摘要: 本文介绍10个提升AI提示词效果的技巧,帮助用户从“能用”进阶到“好用”:1. 明确核心需求,避免模糊表述;2. 限定目标受众,贴合其特点;3. 设定内容格式,规范输出结构;4. 提供背景信息,增强AI理解;5. 给出示例参考,明确输出方向;6. 控制内容长度,适配使用场景;7. 指定语言风格,统一表达调性;8. 分步骤引导,拆解复杂需求;9. 加入约束条件,规避无效输出;10. 迭代优化提示词,持续改进效果。通过精准描述、细化要求和持续调整,可显著提升AI生成内容的质量与匹配度。
2025-09-05 16:46:07
310
原创 【人工智能】提示词中的“时间范围”限定:让输出聚焦特定时期的信息
文章摘要: 本文详细介绍了如何通过“时间范围限定”优化大模型输出的精准性。核心方法是在提示词中明确指定具体时间段(如日期、月份、年份或相对时间),避免输出跨时段、过时或未来预测信息。文章解析了3种基础限定形式(具体日期、月份/季度/年份、相对时间)和4个进阶技巧(明确边界、补充背景、限定信息来源、排除无关时段),并提供了数据查询、文案创作、政策解读等场景的实用案例。同时指出新手常见误区(表述模糊、忽略信息来源时间等)及解决方案,最后推荐万年历、Excel等辅助工具。通过系统练习,用户可显著提升大模型输出的时
2025-09-04 11:47:55
762
原创 【人工智能】大模型提示词入门:用“示例-解释”法提升理解效率
摘要:大模型提示词入门——"示例-解释"法提升理解效率 本文介绍了提升大模型理解效率的"示例-解释"法,该方法通过提供具体示例和明确解释,帮助大模型准确理解用户需求。核心内容包括: 方法定义:同时提供1-3个"输入-输出"示例和对应的解释说明,让大模型掌握执行标准。 优势: 使抽象要求具体化 突出关键细节 减少反复修改次数 实施步骤: 明确任务 提供参照示例 解释关键标准 提交待处理内容 应用场景: 文本改写 信息提取 代码生成 数学解题 文案创作
2025-09-04 10:44:14
361
原创 【人工智能】提示词学习:从“复制模板”到“自定义创作”的过渡技巧
本文探讨从“复制模板”到“自定义创作”提示词的过渡技巧。首先分析了模板的优缺点:虽能快速上手但难以满足个性化需求。然后提出过渡前的三项准备:积累模板使用经验、明确核心需求、了解AI工具能力边界。核心技巧包括:拆解模板组成模块、根据需求重组模块、补充约束条件等。文章还介绍了进阶方法(如“问题-解决方案”框架),并给出代码生成、文档撰写等实战案例。最后指出应避免过度复杂化、忽视AI能力匹配等误区,建议建立场景化提示词库,通过持续实践和迭代优化提升提示词创作能力。
2025-09-04 10:18:58
840
原创 【人工智能】零基础:用提示词生成正则表达式的简单方法
对于很多零基础的朋友来说,正则表达式可能是一个让人头疼的知识点。它的语法规则看起来复杂,记起来也不容易。但在日常的工作和学习中,正则表达式又经常会用到,比如处理文本数据、验证输入格式等
2025-09-04 09:50:45
576
原创 【人工智能】提示词中的“引用来源”:让大模型标注信息出处的技巧
本文系统介绍了如何在大模型生成内容时有效标注引用来源,提升信息的准确性和可信度。全文从基础概念出发,详细讲解了引用来源的核心定义、作用及常见类型(官方机构、学术来源、权威媒体等),并针对学术写作、行业报告、科普文章等不同场景,提供了具体的提示词设计方法和示例。文章还总结了四个核心设计原则:明确信息类型、来源范围、标注格式和时间范围,并针对常见问题提供了进阶优化技巧,如分步骤提示、多轮对话调整等。此外,还分析了不同大模型在引用来源标注上的差异,给出了风险规避建议和实用工具推荐,帮助用户在实际应用中更高效、安全
2025-09-03 11:48:11
817
1
原创 【人工智能】入门必知:提示词与模型参数(如max_tokens)的配合使用
摘要:本文系统介绍了提示词与模型参数(如max_tokens、temperature等)的配合使用方法。第一部分解析基础概念,说明提示词是用户的指令,而模型参数是控制生成效果的"调节旋钮"。第二部分详解常用参数功能及调节方法,包括控制长度的max_tokens、控制随机性的temperature、控制多样性的top_p等。第三部分提出四大配合原则:提示词明确需求是基础、参数取值需匹配需求、先固定核心参数再微调、结合模型默认值调整。文章还通过5个典型场景(事实问答、创意文案、学术内容、代码
2025-09-03 11:11:16
664
原创 【人工智能】大模型提示词的“迁移性”:在A模型有效的提示词能直接用在B模型吗?
本文探讨了大模型提示词的迁移性问题,即在一个模型中有效的提示词能否直接在另一个模型中使用。文章分析了影响提示词迁移性的核心因素,包括模型差异(训练数据、理解能力、输出风格)、提示词特性(清晰度、细节度、专业性)和使用场景差异(通用vs专业、短内容vs长内容)。通过具体案例展示了不同场景下提示词迁移的成功与失败案例,并提出了提升迁移性的实用方法:让提示词更明确、避免模型专属依赖、分步骤设计提示词、进行小范围测试调整。文章还针对不同类型大模型(通用对话模型、专业领域模型、代码生成模型)给出了专门的迁移适配技巧,
2025-09-03 10:40:21
905
原创 【人工智能】提示词基础:如何指定输出中的“禁止内容”
本文系统介绍了在AI生成内容时如何有效指定"禁止内容"的方法。首先阐述了禁止内容的定义和重要性,包括确保内容相关性、规避风险和提高效率。然后将禁止内容分为四类:无关信息、敏感信息、不当表述和格式错误。详细讲解了三种基础指定方法:直接列举法、定义范围法和反向描述法,并提供了多个场景的实例说明。文章还总结了禁止内容指定的注意事项、效果验证方法和常见问题解决方案,特别强调了要结合"允许内容"进行优化。最后针对不同AI工具特点、受众类型和特殊场景,提供了灵活的禁止内容调整策略
2025-09-03 10:26:03
659
原创 惊了!用 JavaAI 撸电商核心功能,我从 “代码小白“ 变 “项目大神“,3 小时搞定别人 3 天的活
家人们谁懂啊!以前听说要做电商系统,我直接吓得关掉了IDEA——光是"商品管理"“订单流程”“购物车计算"这几个词,就够我啃一周文档。但自从用了JavaAI工具(我用的是飞算JavaAI,亲测好用),我发现开发居然能这么"躺平”:不用死磕SQL,不用纠结逻辑,甚至不用写重复代码,AI直接把"半成品"喂到嘴边,我只需要做"选择题"就行!
2025-09-02 22:22:23
870
111
原创 【人工智能】新手指南:用提示词生成API文档的实用模板
本文介绍了如何利用提示词高效生成API文档的实用指南。针对新手开发者,文章首先阐述了使用提示词生成文档的三大优势:降低编写门槛、减少信息遗漏、提升文档一致性。核心部分提供了基础版和进阶版API文档模板,涵盖接口功能、请求参数、返回结果等核心模块,并演示了用户登录API的完整生成流程。文章还针对常见问题(如文档遗漏、格式混乱)提供解决方案,推荐了PromptBase、SwaggerUI等辅助工具,帮助开发者快速掌握这一技能。最后,文章展望了AI自动生成文档的未来趋势,并提供了资源汇总和常见问题解答,为新手开发
2025-09-02 17:19:19
584
原创 【人工智能】提示词中的“迭代指令”:让大模型逐步优化结果的技巧
迭代指令是一种通过多轮优化引导大模型生成更精准结果的提示词技巧。它通过"分步执行-评估对比-调整优化"的机制,显著提升输出质量。核心优势包括:降低单次提示词设计难度、提升结果贴合度、节省时间成本。 设计迭代指令需把握三个要点:明确具体可衡量的优化目标、设定清晰可执行的迭代步骤、加入参考标准或示例对比。同时要合理控制迭代轮次,避免无限循环。典型应用场景涵盖文本生成(如文案创作)、数据处理(如表格清洗)和问答任务。 实践时需注意常见误区:避免盲目增加轮次、防止单轮目标过多、确保指令表述精准。
2025-09-02 17:04:04
886
原创 【人工智能】大模型提示词入门:理解“提示词调优”与“模型微调”的区别
本文深入探讨了大模型应用中提示词调优与模型微调两项核心技术的区别。提示词调优通过优化输入提示引导模型输出,具有参数效率高、资源需求少的特点,适合少样本、多任务场景;而模型微调通过调整模型参数适配特定任务,性能提升显著但计算成本高,适合数据充足的专业任务。文章从原理、方法、优势到应用场景进行了系统对比,并提供了工具推荐和选择策略,帮助开发者根据任务需求、资源条件等因素选择合适技术方案,充分发挥大模型潜力。
2025-09-02 16:26:34
1008
原创 【人工智能】提示词基础:如何让大模型“复盘”并优化自身输出
摘要: 本文探讨如何通过提示词引导大模型进行“复盘”以优化输出质量。首先解释“复盘”概念,即让大模型检查自身输出的准确性、完整性和逻辑性,并分析其必要性。核心方法包括设计包含身份定位、复盘对象、维度和输出要求的提示词,针对不同场景(如学习、工作、创作)提供具体示例。优化时需分步聚焦问题,结合多轮反馈调整内容,同时推荐使用模板工具和上下文管理工具提升效率。文章还总结了常见问题(如遗漏关键点、格式混乱)的解决方案,并通过实际案例演示从问题输出到优质结果的完整优化流程。
2025-09-02 16:19:25
955
原创 【人工智能】新手避坑:提示词中包含敏感信息的风险与规避
很多新手在使用大模型(如 ChatGPT、文心一言、讯飞星火)时,只关注 “如何让大模型生成想要的结果”,却忽略了提示词中的信息安全问题。比如:1.1 为了让大模型 “更了解自己”,在提示词中输入 “我叫张三,手机号 138XXXX1234,在 XX 公司做财务”;
2025-09-01 14:08:16
941
原创 【人工智能】提示词中的“对比分析”:让大模型横向比较多个选项
摘要:本文系统介绍了如何设计和使用"对比分析"类提示词,帮助用户通过大模型进行高效的横向比较。文章首先阐述了对比分析的核心要素:明确的对比对象、清晰的对比维度、具体的需求场景和输出要求。随后提供了三种场景的专用模板(产品选择类、方案评估类、工具选择类)和通用框架,并详细说明了使用方法和示例。针对常见问题,文章给出了6个解决方案和3个优化技巧(权重分配、负面排除、信息验证)。最后通过两个实战案例(办公电脑对比、营销方案对比)展示了模板的实际应用,并推荐了辅助工具和行业应用示例。文章强调,有
2025-09-01 11:45:36
659
原创 【人工智能】入门级提示词模板:适用于需求分析与功能设计
本文介绍了使用大语言模型进行需求分析和功能设计时的提示词模板方法,主要包含以下内容: 模板设计背景 解决新手面对大模型时"不知如何提问"和"需求表达不清"两大痛点 通过结构化模板填空,确保输入信息完整准确 核心模板框架 通用基础模板包含5大模块:需求类型、项目背景、目标用户、核心需求/功能方向、约束条件 细分场景模板(ToC/ToB/工具类产品)各有侧重 模板使用要点 需求分析聚焦"用户要什么"和"为什么要做" 功能设计明确&q
2025-09-01 11:32:52
866
原创 【人工智能】大模型提示词的“上下文依赖”:为什么历史对话会影响当前输出?
大模型提示词的"上下文依赖"是指大模型在生成当前回答时会参考之前的对话内容。这一特性源于大模型的训练机制和工作原理:1. 训练数据包含对话逻辑;2. 模型只能依赖短期上下文;3. 受"上下文窗口"限制;4. 需要历史对话补充提示词意图。合理利用上下文依赖能提升对话连贯性和回答准确性,但需注意避免频繁切换话题、关键信息重复强调等技巧。不同大模型在上下文窗口大小、处理效率和关联准确性方面存在差异,用户可根据需求选择适合的模型。未来发展趋势包括更大的上下文窗口、更智能的上下
2025-09-01 11:19:19
798
原创 【人工智能】提示词学习资源:10个免费的在线练习平台
摘要:本文推荐10个免费在线提示词练习平台,帮助用户提升AI交互能力。这些平台分为基础入门、场景实战、竞技闯关和社区交流等类型,满足不同水平用户需求。文章详细解析每个平台的特点、使用方法和适用人群,并分享3个通用练习技巧:需求拆解、对比优化和复盘总结。同时提供学习资源拓展和常见误区避坑指南,帮助用户将练习成果转化为实际应用能力,有效提升AI提示词编写水平。
2025-08-29 15:45:49
925
原创 【人工智能】零基础:用提示词生成数据库查询语句的步骤
摘要:本文为零基础用户提供利用AI工具生成数据库查询语句的完整指南。通过6个核心步骤(明确需求、整理表结构、设计提示词、提交生成、验证语句、优化技巧)和3大常见场景案例(单表查询、多表关联、统计查询),帮助用户无需掌握SQL语法即可获得准确查询语句。文章详细解析了提示词设计模板、字段别名设置、数据去重等优化技巧,并针对5类常见错误提供解决方案。同时推荐Navicat、豆包、SQLFormat等辅助工具,以及MySQL教程、提示词工程指南等学习资源,形成从入门到进阶的完整学习路径,使零基础用户也能高效生成符合
2025-08-29 15:21:36
800
原创 【人工智能】提示词中的“格式校验”:让输出自动符合规范的技巧
本文介绍了在AI生成内容时如何通过"格式校验"提示词确保输出规范。格式校验包含明确格式规则和校验动作两个要素,能解决反复修改格式、满足强制要求和统一多人协作三大痛点。文章详细讲解了6个实用技巧:关键词+示例锁定结构、规则清单+修正指令处理复杂格式、层级标记+嵌套校验管理多层级内容、数据格式校验确保数值规范、模板填充+校验应对固定模板以及多轮校验处理超复杂格式。针对常见问题如规则模糊、漏校验动作等提供了解决方案,并推荐了豆包、WPSAI等辅助工具。进阶方向包括根据AI工具特性调整规则、加入
2025-08-29 14:57:44
664
原创 【人工智能】新手常见:提示词过长导致截断?3个解决办法
摘要: 新手使用AI工具时,常因提示词过长被截断,导致输出不符预期。本文提供3种解决方案: 拆分提示词:将长需求拆解为逻辑连贯的短模块,分步提交并附上前序结果以确保衔接。 优化结构:删除冗余信息,用分点格式明确核心需求(如“目标+要求+背景”),保留关键约束。 工具辅助: 压缩工具(如ChatGPTPromptCompressor、NotionAI)自动精简提示词; 管理工具(如PromptBase、飞书表格)分类存储分块提示词,便于复用。 适用场景与技巧: 代码类需求优先提交核心逻辑,再补充细节; 创意写
2025-08-29 14:37:35
1022
原创 【人工智能】提示词中的“情感倾向”控制:让输出更中性或带特定语气
摘要:文章探讨了如何通过提示词控制大模型输出的情感倾向,包括中性客观、积极热情、亲切温和和专业严谨四种类型。详细分析了不同情感倾向的适用场景、特点及控制方法,如直接指定类型、关键词引导、场景描述等。文章还提供了技术文档、产品推荐、新手教程等场景的实用案例,并针对常见问题给出解决方案。最后对比了不同大模型的情感控制特点,帮助用户根据需求选择合适的情感表达方式,使生成内容更贴合目标受众和场景需求。
2025-08-28 10:17:49
666
原创 【人工智能】入门必练:用提示词生成技术博客大纲的案例
摘要:本文介绍了如何利用提示词生成技术博客大纲的方法,帮助入门者解决大纲搭建难题。文章首先分析了使用提示词生成大纲的优势,包括降低难度、节省时间和学习专业结构。随后详细讲解了提示词设计原则,包括明确技术主题、核心模块和内容详略程度。通过HTML表单制作、Vue组件通信等具体案例,展示了不同技术领域的提示词编写技巧和生成效果。最后给出了优化提示词和解决常见问题的实用建议,帮助读者快速掌握这一技能。全文150字。
2025-08-28 10:14:06
768
原创 【人工智能】大模型提示词的“长尾效应”:简单提示词也能解决复杂问题
摘要: 大模型的提示词长尾效应表明,即使简单、低频的提示词也能通过模型的知识网络解决复杂问题。例如,学术研究中“罕见疾病治疗新思路”的提示词可触发跨学科联想,而“奇异外星生物”的提示词能激发科幻创作灵感。选择提示词时需聚焦问题核心、结合经验并尝试多角度表述。该效应节省时间、激发创新且适用多场景,但也面临结果不确定性和模型依赖等挑战。未来,随着大模型能力的提升,长尾效应将更高效地助力问题解决与创新。(150字)
2025-08-28 10:07:27
930
原创 【人工智能】提示词基础:如何指定输出语言(中英文切换及小语种)
文章摘要: 本文系统讲解了在AI工具中通过提示词指定输出语言的方法,涵盖中英文切换及小语种应用。核心要点包括: 明确语言需求:直接使用标准语言名称(如“中文”“法语”),避免模糊表述,并将语言指令置于提示词开头或结尾以增强识别。 中英文切换技巧:中文需结合风格(正式/口语化)和专业领域优化;英文需区分语种变体(美式/英式)及场景规范(学术/广告)。 小语种指定方法:需确认AI支持度,补充文化背景信息,并通过例句参考提升准确性。混合输出时需明确语言分工与格式。 工具差异与问题解决:不同AI对语言支持能力各异,
2025-08-28 09:43:07
479
原创 【人工智能】新手指南:用提示词优化代码的3个实用技巧
本文为编程新手提供了一份使用提示词优化代码的实用指南,重点介绍了三个核心技巧: 明确优化维度:根据需求选择性能、可读性或语法纠错等具体优化方向,并提供针对性提示词模板,如性能优化要求"用列表推导式替代for循环"。 补充上下文信息:详细说明代码用途、运行环境和输入输出要求,确保优化贴合实际场景。例如处理10万行CSV数据时,需明确数据量和依赖库限制。 添加示例引导:通过提供优化示例或输出格式样板,帮助模型更精准地理解优化预期。比如展示理想的异常处理代码结构。 文章还解答了常见问题,如优化
2025-08-27 11:11:02
1060
原创 【人工智能】提示词中的“条件判断”:让大模型根据输入做不同响应
条件判断提示词是让AI模型根据输入内容自动选择不同响应方式的实用工具。它通过"如果...就..."的规则设定,让模型能识别输入类型并匹配对应处理方式。相比普通提示词,条件判断提示词具有多分支响应逻辑,能提升响应精准度、减少交互次数并适配复杂需求。其核心要素包括:明确的条件主体(输入内容类型/特征)、可执行的判断规则(关键词/格式匹配)以及对应的分支响应任务。设计时需注意条件清晰无冲突、响应匹配核心需求、语言简洁易懂。典型应用场景包括客服接待(分类处理咨询)、学习辅助(区分学科需求)和办公
2025-08-27 10:50:02
998
原创 【人工智能】大模型提示词入门:理解“指令微调”与提示词的关系
本文解析了大模型应用中"指令微调"和"提示词"两个核心概念的关系与配合使用。指令微调是从模型优化角度出发,通过专业数据集训练提升模型理解人类指令的能力;提示词则从用户交互角度,通过精准表达需求引导模型输出。二者相辅相成:指令微调为提示词提供基础理解能力,提示词则触发微调后的模型潜力。文章详细介绍了二者的实施方法、配合策略、常见误区及工具推荐,并通过电商文案、学术辅助等案例展示了如何通过指令微调与优质提示词的结合,实现更精准的大模型输出效果。同时强调了需根据任务复杂度选
2025-08-27 10:34:48
887
原创 【人工智能】提示词学习:从“被动回答”到“主动追问”的交互技巧
从被动回答到主动追问:优化AI交互的关键技巧 传统"被动回答"式交互存在明显局限,而"主动追问"技巧能显著提升AI使用效果。摘要指出: 核心差异:被动回答是单向一次性交互,而主动追问通过多轮对话逐步明确需求 三大价值:提升结果精准度(提高76%)、降低表达难度、挖掘模型深层能力 四步原则:目标明确、关联前文、控制粒度、语言简洁 典型场景:文本创作通过3-5轮追问可使内容匹配度提升至90% 常见误区:避免偏离逻辑、内容重复等问题,建议使用思维导图等工具辅助 该技巧适用于
2025-08-27 10:24:09
768
原创 【人工智能】入门级多模态提示词:文本+图片提示词的基础写法
本文介绍了入门级多模态提示词(文本+图片)的基础写法。首先阐述了多模态提示词的概念和作用,指出其能让AI模型更准确地理解用户需求。接着详细说明了文本和图片部分的核心要素:文本需包含明确的任务目标、风格要求和细节补充;图片需保证清晰度、相关性和格式兼容性。文章还提供了基础写作步骤和不同场景的应用案例,包括图像生成、图像理解、图文创作和图片修改。最后给出了常见问题解决方法、实用工具推荐及进阶优化技巧,帮助新手快速掌握文本+图片提示词的基本使用方法。
2025-08-27 10:13:59
758
原创 【人工智能】提示词中的“专业术语”使用:何时该通俗,何时该精准?
摘要: 在提示词中使用专业术语需根据场景灵活选择。专业术语能精准传递需求、提高效率(如代码生成中的“快速排序”),但需避免堆砌。通俗表达适用于模型能力不足、普及型内容或用户不熟悉术语的场景(如医疗咨询改用“降压药”代替“ACEI类药物”)。判断依据包括:模型能力(擅长领域用术语)、任务目标(专业报告用术语,科普用白话)、用户认知水平及受众需求。常见误区如术语混淆(Python中“list”与“tuple”)或忽略版本差异(MySQL用“LIMIT”而非“TOP”),可通过小范围测试规避。多领域案例显示,优化
2025-08-25 14:00:30
882
原创 【人工智能】新手避坑:别在提示词中要求模型“忘记”已学知识
摘要: 新手使用大模型时,常误以为提示词中要求模型“忘记”已学知识能避免干扰,实则适得其反。大模型的知识存储于参数中,无法按指令临时遗忘。错误提示词会导致输出混乱或质量下降。正确做法是:1. 引导创新(如结合现有知识想象未来场景);2. 明确语境(限定专业领域或特殊含义);3. 优化提示(融合通用与专业知识)。案例对比显示,合理提示词能显著提升生成内容的逻辑性与专业性。理解模型机制并善用提示技巧,才能高效利用大模型能力。
2025-08-25 11:26:25
673
原创 【人工智能】大模型提示词的“鲁棒性”:如何让提示词适应不同模型
摘要: 大模型提示词的鲁棒性指同一提示词在不同模型上均能输出稳定、符合预期的结果。提升鲁棒性需关注三点:1)规范结构,采用“指令+背景+输入+约束+输出”框架,明确任务边界与格式;2)优化表达,量化指标(如字数)、减少主观描述,适配模型特性(如数据时效、输出风格);3)增加容错,如多轮引导、异常处理。实践案例显示,结构化提示词可使GPT-4、文心一言等模型在文本生成、数据分析等任务中输出一致性显著提高。验证时需覆盖多模型、多样输入,评估准确性、一致性等维度,并通过迭代优化平衡鲁棒性与效果。
2025-08-25 11:20:11
698
原创 【人工智能】提示词基础:如何控制输出长度(字数、段落、步骤)
本文介绍了如何通过提示词控制AI生成内容的长度,包括字数、段落和步骤三个方面。在字数控制上,可以直接指定字数范围或使用描述性语言暗示;段落控制可通过指定段落数量、按主题划分或格式要求实现;步骤控制则能通过设定步骤数量、按阶段划分或调整详细程度来完成。文章还提供了综合控制技巧和常见问题解决方法,适合不同场景需求,帮助用户更高效地获取所需内容。
2025-08-22 14:52:08
956
原创 【人工智能】入门实战:用提示词生成单元测试代码的5个案例
使用提示词生成单元测试代码的5个实战案例 本文展示了如何利用AI提示词高效生成单元测试代码的5个实际案例,涵盖Python、Java、JavaScript、C#和Go等多种语言。每个案例包含:被测函数说明、提示词设计、生成的测试代码及分析。文章还总结了设计提示词的通用技巧(明确函数信息、列出测试场景、指定测试框架)和常见问题解决方法,建议将这一方法融入开发流程,同时注意检查生成代码的覆盖率和正确性。该方法能显著提升单元测试编写效率,特别适合新手快速掌握测试要点。
2025-08-22 14:43:44
684
原创 【人工智能】为什么“角色扮演”提示词更有效?底层逻辑解析
摘要:角色扮演提示词通过精准定位AI知识领域(如设定"资深金融分析师")、塑造特定语言风格(如"热情旅行博主")及构建专业思维框架,显著提升输出质量。其核心优势在于增强内容专业性(提升60%权威数据引用)、场景适配性(如电商客服对话匹配度提高45%)和创意激发(独特视角产出增加35%)。构建要素包括明确角色定义(详细度影响效果达72%)、任务匹配度(相关性提高58%)及背景约束条件。在教育领域使学习效果提升40%,商业咨询中帮助企业决策准确率提高25%。未来将向智能角
2025-08-22 14:33:35
868
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人