C#Halcon从零开发_Day5_仿射矩阵与仿射变换

一、引言

在Halcon中,有时候我们需要对一个区域进行缩放、平移、旋转,这时候需要用到仿射变换,本质是运用线性代数来对点进行计算。下面的一些基础的词汇解释,有利于记忆算子:

homogeneous:齐次的

matrix2D:二维矩阵

‌二、二维尺度变换矩阵

2.1 缩放与平移详解

在计算机图形学和图像处理中,matrix2D 常用于表示二维空间中的几何变换,例如:

  • 齐次二维变换矩阵:一种特殊的 3×3 矩阵,用于表示平移、旋转、缩放等二维变换。结构

  

  • 参数说明
    • a,b,c,d:用于旋转和缩放。
    • tx​,ty​:用于平移。
    • 作用:通过矩阵乘法,可以将变换应用于二维点或图像。

假设有一个二维点 P(x,y),我们想对其进行缩放和平移变换:

  • 原始点:(齐次坐标表示)

  • 变换矩阵

其中 Sx​ 和 Sy​ 是缩放因子,tx​ 和 ty​ 是平移量。

  • 变换后的点

2.2 旋转详解

旋转的基本原理

在二维空间中,旋转一个点(或对象)需要指定:

  • 旋转中心:通常为原点(0, 0),也可为任意点(需先平移到原点,旋转后再平移回去)。
  • 旋转角度:逆时针为正,顺时针为负(单位为弧度或度)。

2.2.1以原点为中心旋转

对于一个点 P(x,y),围绕原点逆时针旋转角度 θ 后的新坐标 P′(x′,y′) 为:

推导过程为:

齐次坐标表示

在齐次坐标中,点 P 表示为 

​,旋转矩阵 R 为:

旋转后的点 P′ 为:

2.2.2特殊情况:不以原点为中心旋转

如果旋转中心是 C(Px​,Py​),需分三步:

1.平移到原点

2.旋转

3.再平移回原点

总变换矩阵为:M=T2​⋅R⋅T1​

三、仿射变换

*获取窗口
dev_get_window (WindowHandle)
*绘制并生成矩形
draw_rectangle2 (WindowHandle, Row, Column, Phi, Length1, Length2)
gen_rectangle2 (Rectangle, Row, Column, Phi, Length1, Length2)
*生成一个初始仿射矩阵(本质是一个1,0,0,0,1,0,0,0,1的3X3矩阵)
hom_mat2d_identity (HomMat2DIdentity)

*顺时针旋转45°
*获取旋转中心
area_center (Rectangle, Area, Row1, Column1)
*生成顺时针旋转45°的放射矩阵
hom_mat2d_rotate(HomMat2DIdentity,rad(-45),Row1,Column1,HomMat2DRotate)
*仿射变换
affine_trans_region (Rectangle, RegionAffineTrans, HomMat2DRotate, 'nearest_neighbor')

*垂直方向缩放1.5倍,水平方向缩放3倍
hom_mat2d_scale (HomMat2DIdentity, 1.5, 3, Row1, Column1, HomMat2DScale)
affine_trans_region (Rectangle, RegionAffineTrans1, HomMat2DScale, 'nearest_neighbor')

*垂直方向移动100,水平方向移动300
hom_mat2d_translate(HomMat2DIdentity,100,300,HomMat2DTranslate)
affine_trans_region (Rectangle,RegionAffineTrans2, HomMat2DTranslate, 'nearest_neighbor')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值