- 博客(67)
- 收藏
- 关注
原创 Flink Watermark原理与实战
Watermark(水位线)是 Flink 中用于处理事件时间(Event Time)的一种机制 ,它本质上是一种特殊的时间戳。简单来说,Watermark 是插入到数据流中的一个标记,用于标记事件时间的上界。在 Flink 的流处理中,Watermark 可以看作是一个时间戳,它表示所有小于该时间戳的事件都已经到达,之后不会再有该时间戳之前的事件到来。比如,我们有一个订单流,每个订单都有一个下单时间(事件时间)。
2025-07-15 17:37:13
733
原创 Flink窗口处理函数
Flink 窗口处理函数作为 Flink 实时数据处理框架中的核心组件,为我们在处理无界数据流时提供了强大而灵活的工具。通过对窗口的合理划分和各种窗口处理函数的巧妙运用,我们能够高效地实现数据聚合、统计分析等复杂的业务逻辑。从时间窗口到计数窗口,不同类型的窗口满足了多样化的业务场景需求;而 ReduceFunction、AggregateFunction、ProcessWindowFunction 等窗口处理函数以及它们的组合使用,更是赋予了我们在数据处理上的无限可能。
2025-07-14 16:48:27
888
原创 Flink时间窗口详解
在使用 Flink 时间窗口时,合理选择事件时间、处理时间或摄入时间,能够满足不同业务场景下对时间语义的需求。通过实际的代码示例,我们也看到了如何在 Flink 中实现时间窗口操作,从数据源的定义、数据的转换,到窗口的分配和计算,每一步都紧密相连,共同完成对数据流的实时处理和分析。与其他流处理框架相比,Flink 在时间窗口处理方面展现出了强大的优势,无论是对事件时间的原生支持,还是丰富灵活的窗口操作,都使得它能够在复杂的业务场景中脱颖而出。
2025-07-10 16:57:07
881
原创 Flink DataStream API详解(二)
Flink DataStream API 的多流转换操作,如 union、connect 和 split 等算子,为我们提供了强大的工具,使他们能够灵活地处理多个数据流之间的复杂关系。通过这些算子,我们可以将不同来源的数据进行合并,对不同类型的数据进行关联处理,以及根据数据特征进行分类拆分,从而满足各种复杂业务场景下的流处理需求。。
2025-07-09 10:20:23
792
原创 Flink DataStream API详解(一)
在大数据实时处理的领域中,Flink DataStream API 展现出了强大的功能和卓越的性能。通过本文的学习,我们深入了解了 Flink DataStream API 的编程基础,掌握了从不同数据源获取数据的方法,包括文件、Kafka 和 Socket 数据源。同时,我们详细剖析了常用的转换算子,如 map、flatMap、filter、keyBy 和 window 等,这些算子为我们处理和分析数据流提供了丰富的手段。。
2025-07-08 15:33:07
808
原创 深入Flink核心概念:解锁大数据流处理的奥秘
Flink 凭借其对数据流的独特抽象、灵活高效的任务处理机制、精妙的分布式架构以及在流处理方面的显著优势,已然成为大数据处理领域的佼佼者。无论是处理有界流还是无界流,Flink 都能提供高效、可靠的解决方案,满足不同场景下的数据处理需求。。
2025-07-02 17:24:05
790
原创 面试官爱问的CAS,一文带你吃透
CAS 作为 Java 并发编程中的关键技术,以其独特的无锁机制,在多线程环境下实现了高效的原子操作。它通过比较并交换的原子指令,避免了传统锁机制带来的线程阻塞和上下文切换开销,大大提升了并发性能。在原子类、无锁数据结构和乐观锁等场景中,CAS 都发挥着不可或缺的作用,为开发者提供了强大的工具来处理多线程并发问题。然而,CAS 并非完美无缺,它存在着 ABA 问题、循环开销以及只能保证单个变量原子性等缺点。
2025-07-01 09:37:08
959
原创 面试官最爱问的AQS,一文带你吃透!
解题思路:介绍自定义同步器的步骤,包括继承 AQS 类、重写必要的抽象方法(如tryAcquire、tryRelease等),以及如何使用自定义同步器。答案:自定义一个基于 AQS 的同步器,首先需要继承AbstractQueuedSynchronizer类。然后,根据同步器的类型(独占模式或共享模式),重写相应的抽象方法。对于独占模式的同步器,通常需要重写tryAcquire和tryRelease方法。
2025-06-30 17:38:06
745
原创 从“菜鸟”到“大神”:带你吃透Java垃圾收集
Java 垃圾收集器家族就像一个拥有众多能工巧匠的团队,每个成员都有独特的技能,为 Java 程序的高效运行保驾护航。从简单高效的 Serial 收集器,到追求极致低延迟的 ZGC 收集器,它们各自在不同的领域发光发热。在选择垃圾收集器时,就像为你的应用程序挑选合适的伙伴,需要充分了解应用的需求和运行环境,权衡吞吐量、响应时间和 CPU 资源等因素,做出明智的决策。同时,不要忘记通过实际测试和监控来验证和优化你的选择,让垃圾收集器与应用程序完美协作,创造出高效、稳定的 Java 应用世界。
2025-06-28 17:33:25
1166
原创 从HashMap到ConcurrentHashMap,面试官究竟在考什么?
HashMap 和 ConcurrentHashMap 就像是 Java 集合家族中的两位得力干将,各自在不同的领域发光发热。HashMap 以其在单线程环境下的简单高效,成为日常开发中处理键值对数据的首选工具;而 ConcurrentHashMap 则凭借出色的线程安全机制和高并发性能,在多线程的复杂场景中独领风骚。希望通过本文的剖析,能帮助大家在面试中对这两个集合类的问题应对自如。同时,集合框架博大精深,HashMap 和 ConcurrentHashMap 只是其中的冰山一角。
2025-06-27 10:07:08
900
原创 为什么索引偏爱B+树?
B + 树凭借其独特的结构和诸多优势,成为数据库索引的理想选择。它在减少磁盘 I/O 次数、提高查询效率和稳定性,以及支持范围查询和排序等方面表现出色,为数据库系统的高效运行提供了有力保障。通过本文的探讨,相信大家对为什么索引要使用 B + 树这种数据结构有了更深入的理解。当然,数据库索引知识博大精深,B + 树只是其中的一部分。如果你对数据库索引感兴趣,不妨进一步深入学习,探索更多关于索引优化、不同数据库索引实现差异等方面的知识,这将有助于你在数据库开发和管理中更加得心应手。。
2025-06-27 09:11:38
867
原创 吃透volatile:Java并发编程的关键钥匙
在 Java 并发编程的领域中,volatile 关键字扮演着举足轻重的角色,是我们理解和处理多线程问题的关键一环。它就像是一把神奇的钥匙,能够帮助我们解决多线程环境下数据可见性和有序性的难题。先来讲讲内存可见性问题。假设我们有一个场景,你和你的小伙伴一起在玩一个游戏,游戏中有一个公共的分数板,记录着你们的得分。你在自己的小空间里努力游戏,每获得一分,就会在自己的小本子上记录下来,然后想着过一会儿再更新到公共的分数板上。而你的小伙伴呢,他在自己的地方也在查看这个分数板,想要根据分数来决定下一步的策略。
2025-06-26 10:40:51
702
原创 深入解析synchronized实现原理
为了解决线程安全问题,Java 提供了synchronized关键字,它就像是集市中的秩序维护者,为多线程环境带来了规则和秩序。synchronized关键字可以用来修饰方法或者代码块。当它修饰一个方法时,这个方法就成为了同步方法,同一时刻只能有一个线程能够进入该方法执行。当它修饰一个代码块时,这个代码块就被称为同步代码块,线程需要先获取到指定对象的锁,才能进入代码块执行。。
2025-06-26 10:26:19
924
原创 从面试题出发,如何设计消息队列
设计一个消息队列是一项充满挑战但又极具价值的任务。从明确设计目标和需求,到进行技术选型,再到深入设计核心功能、实现高可用和扩展性以及优化性能,每一个环节都需要我们精心思考和设计。同时,在设计过程中,我们还需要解决消息丢失、重复消费、顺序性等常见问题,确保消息队列的可靠性和稳定性。对于开发人员来说,深入理解消息队列的设计原理和实现方法,不仅能够提升我们的技术能力,还能让我们在面对复杂的分布式系统架构时,更加从容地应对各种挑战。
2025-06-24 09:03:07
705
原创 揭秘RocketMQ消息零丢失秘籍,让数据稳稳“着陆”
在分布式系统中,消息的可靠性至关重要,它直接关系到业务的稳定性和数据的一致性。RocketMQ 作为一款高性能、高可靠的分布式消息中间件,为我们提供了多种保障消息零丢失的方案。从生产者端的事务消息机制和同步消息重试机制,到 Broker 端的同步刷盘和主从同步,再到消费者端的手动提交 offset,这些方案从消息的发送、存储到消费,全方位地确保了消息的可靠传递。在实际应用中,我们需要根据业务场景的特点和需求,灵活选择和配置这些方案,在性能和可靠性之间找到最佳的平衡点。
2025-06-23 15:37:20
465
原创 线程池参数调优
线程池参数优化是一个复杂但又至关重要的任务,它直接关系到系统的性能和稳定性。在实际应用中,我们需要根据任务的类型、系统的资源状况以及业务的需求,仔细地调整线程池的各个参数。对于核心线程数和最大线程数的设置,要充分考虑任务是 CPU 密集型还是 I/O 密集型,参考 CPU 核心数并结合实际压测结果来确定合适的值。任务队列的选择要根据任务的特点和系统的负载情况,权衡队列的有界性和无界性以及任务的等待时间。拒绝策略的选取则要根据业务对任务丢失的容忍程度和系统的响应要求来决定。。
2025-06-23 11:12:43
828
原创 系统CPU狂飙,如何紧急刹车?
回顾整个排查过程,当 Java 系统出现 CPU 飙高、反应慢的问题时,我们首先要借助top、htop等工具快速定位 CPU 占用高的进程,再通过jstack、jstat等命令深入分析线程堆栈和内存 GC 情况,从而找到问题根源并针对性解决。在日常开发中,我们可以采取一系列预防措施。代码层面,编写高效算法、合理管理对象生命周期、优化 IO 操作;JVM 配置方面,根据业务场景和服务器资源合理设置堆内存大小、选择合适的 GC 收集器;系统架构层面,做好压力测试和性能调优,提前发现并解决潜在的性能瓶颈。
2025-06-20 15:50:53
893
原创 高可用数据库集群MHA
MHA 作为 MySQL 高可用环境下的得力助手,以其快速的故障切换、强大的数据一致性保障和出色的架构兼容性,在众多数据库高可用方案中脱颖而出。无论是电商系统在购物高峰期的稳定运行,还是金融系统对交易数据一致性和安全性的严格要求,MHA 都能完美胜任,为企业的核心业务保驾护航。
2025-06-20 10:54:58
259
原创 一文讲透Redis缓存穿透、缓存击穿与缓存雪崩
Redis 缓存穿透、击穿和雪崩是在使用 Redis 缓存时需要重点关注的三个问题。缓存穿透是指查询不存在的数据导致请求直接穿透缓存到达数据库;缓存击穿是热点数据过期瞬间大量请求直接访问数据库;缓存雪崩则是大量缓存集中过期或缓存服务器故障,引发大量请求涌向数据库。这些问题一旦发生,都可能对系统性能和稳定性造成严重影响,甚至导致系统崩溃。为了有效地预防和应对这些问题,我们可以采取多种解决方案。缓存空对象、布隆过滤器和参数校验能很好地解决缓存穿透问题;
2025-06-19 11:26:46
684
原创 高性能数据库集群:分库分表
MySQL 分库分表技术是应对大数据量和高并发挑战的有力武器。通过垂直分库分表和水平分库分表策略,我们能够根据业务需求和数据特点,将庞大的数据分散存储,有效提升数据库的性能和扩展性。在实现分库分表时,无论是借助数据库层的分区功能、业务层的自定义代码,还是中间件如 MyCAT、ShardingSphere 等,都有各自的优势和适用场景。。
2025-06-17 16:19:26
801
原创 Kafka的存储与索引:数据处理的底层奥秘
Kafka 的存储与索引机制是其能够在大数据领域大放异彩的关键所在。日志分段机制将大文件分割成小文件,结合偏移量索引和时间索引,实现了高效的消息存储与快速定位;零拷贝技术通过减少数据拷贝和 CPU 参与,极大地提升了数据传输效率;分层存储策略合理区分冷热数据,降低了存储成本,同时过期策略有效管理了存储资源,确保数据的时效性。。
2025-06-17 10:38:36
1015
原创 Kafka分区分配策略:深入剖析与实战指南
在 Kafka 中,分区(Partition)是主题(Topic)的物理划分,每个主题可以被划分成一个或多个分区 ,每个分区是一个有序的、不可变的消息队列。可以将分区理解为一个特殊的文件,生产者发送的消息会被追加到分区的末尾,每个消息在分区中都有一个唯一的偏移量(Offset),用于标识消息在分区中的位置。Kafka 通过将主题划分为多个分区,可以将消息分散存储在不同的 Broker 节点上,从而实现并行处理。这种设计使得 Kafka 能够处理大量的数据,并支持水平扩展。
2025-06-16 09:29:32
760
原创 深入理解Kafka Consumer:从理论到实战
从拉取模型与推模型的对比,到 Consumer Group 机制中的 Rebalance 流程和 Offset 管理,再到新旧消费 API 的差异,以及在实时日志解析服务中的实战应用,每一个环节都揭示了 Kafka 在消息处理领域的强大能力和灵活性。Consumer Group 机制通过 Rebalance 实现了动态的负载均衡和故障恢复,Offset 管理确保了消费进度的可靠记录。
2025-06-15 16:19:47
898
原创 Kafka Producer核心API:解锁消息传递的高效秘诀
尽管 Kafka 的内置序列化器能够满足大部分基础数据类型的序列化需求,但在实际的业务场景中,我们经常会遇到需要发送自定义 Java 对象的情况。例如,在一个电商系统中,可能需要发送包含订单信息的 Java 对象,这个对象包含订单编号、商品列表、用户信息等多个属性,此时内置的序列化器就显得力不从心了,我们需要自定义序列化器来实现 Java 对象到字节数组的转换。要实现自定义 Java 对象序列化,关键在于实现 Kafka 提供的Serializer接口。该接口定义了三个主要方法:。
2025-06-14 19:08:13
1286
原创 Kafka环境搭建全攻略:从Docker到Java实战
通过本文,我们成功地完成了 Kafka 本地环境的搭建,包括使用 Docker 部署单节点和多节点的 Kafka 集群,配置 Java 项目的 Kafka 客户端依赖,以及通过 Kafka CLI 和 Java 代码进行创建 Topic、发送 / 消费消息的实战操作。这些基础知识和实践经验是我们深入学习 Kafka 的基石,为后续探索 Kafka 的高级特性,如分区策略、消息压缩、事务处理、监控与调优等,打下了坚实的基础。。
2025-06-13 09:27:20
1444
原创 Kafka 架构原理解析
通过对 Kafka 架构原理的深入剖析,我们领略了其在分布式存储、高可用设计以及丰富应用场景中的卓越魅力。Kafka 的分区分配策略和基于 LogSegment 的数据存储格式,使其在海量数据存储和高效读写方面表现出色;ISR 副本机制和严谨的 Leader 选举流程,确保了集群在复杂环境下的高可用性和数据一致性;而在日志收集、流量削峰、微服务异步通信和实时数据流处理等核心应用场景中,Kafka 更是成为了不可或缺的关键技术,为企业的数字化转型和业务创新提供了强大的支持。
2025-06-12 15:59:56
1285
原创 Kafka入门:解锁核心组件,开启消息队列之旅
Kafka 的核心组件 Broker、Topic、Partition、Replica、Producer 和 Consumer,共同构建了一个高效、可靠的分布式消息系统。它们各自承担着独特的职责,又相互协作,确保了 Kafka 在高并发、大数据量场景下的卓越表现。Broker 作为 Kafka 集群的节点,负责消息的存储和传输;Topic 是消息的分类标识,方便对消息进行管理;Partition 实现了消息的并行处理和存储;Replica 保障了数据的高可用性和容错性;
2025-06-12 12:02:37
777
原创 解锁Flink CDC:实时数据同步秘籍
Flink CDC 作为 Java 实时数据处理领域的强大工具,以其卓越的实时性、可靠性和多数据库支持能力,为企业解决了诸多数据处理难题。从原理到实战,我们深入了解了它的工作机制和应用方法,通过案例展示了其在不同场景下的高效表现。希望通过本文的介绍,能激发大家对 Flink CDC 的兴趣,鼓励更多开发者深入学习和应用这一强大的技术,在实时数据处理的领域中探索创新,如果你在学习和使用 Flink CDC 的过程中有任何问题或心得,欢迎在评论区留言分享,让我们一起交流进步!
2025-06-11 09:34:15
1314
1
原创 深入剖析Debezium:CDC领域的“数据魔法棒”
目前,市面上已经涌现出了许多优秀的 CDC 中间件,它们各具特色和优势,为企业提供了丰富的选择。比如阿里巴巴开源的 Canal,它通过模拟 MySQL 主从复制的原理,从 MySQL 的二进制日志(binlog)中解析出数据变更信息,实现了高效的数据捕获和同步。Canal 在国内拥有广泛的用户群体,尤其是在一些对数据一致性要求较高的互联网企业中得到了大量应用。
2025-06-10 15:03:15
1251
1
原创 深入探索CDC之Canal:解锁全量与增量复制的奥秘
Canal 在数据同步方面的表现,其优势十分显著。首先是实时性,Canal 基于 MySQL 的 binlog 实时捕获数据变更,能够在数据发生变化的瞬间就将这些变更同步到目标系统 ,如前文电商案例中,订单数据的实时更新得以快速同步到 Elasticsearch 和 Redis ,为实时业务分析和用户查询提供了及时的数据支持。
2025-06-09 14:30:53
1050
原创 深入探索CDC:实时数据同步利器
通过本文的介绍,我们深入了解了 CDC 的概念、工作原理、在 Java 中的应用场景、实战步骤以及其优势与挑战。希望读者能够在实际项目中尝试应用 CDC 技术,充分发挥其在数据同步和实时处理方面的强大功能,为企业的数据管理和业务发展提供有力支持。在不断发展的技术浪潮中,让我们持续关注 CDC 技术的发展趋势,积极探索其更多的应用可能性,为数据处理领域带来更多的创新和突破。工具支持数据库实现方式特点DebeziumMySQL、PostgreSQL 等日志解析。
2025-06-08 16:23:30
933
原创 解锁Java线程池:性能优化的关键
Java 线程池作为并发编程中的重要工具,为我们提供了高效管理和执行线程的能力。通过对线程池的深入理解,我们掌握了不同类型线程池的特点和适用场景,剖析了 ThreadPoolExecutor 的核心原理和任务处理流程,并且通过实战演练和性能调优,学会了如何正确使用线程池来提升系统的性能和稳定性。在实际应用中,合理使用线程池可以显著提高 Java 应用程序的性能和响应速度,减少资源的浪费和系统的开销。同时,我们也需要注意线程池使用过程中的常见问题,避免陷入误区,及时排查和解决性能瓶颈。。
2025-06-05 15:36:15
919
原创 Java异步编程的秘密武器:CompletableFuture
CompletableFuture作为 Java 8 引入的强大异步编程工具,极大地简化了异步任务的处理。它克服了传统Future的局限性,提供了丰富的方法用于创建、组合、编排异步任务以及处理异常,使得异步编程更加灵活、高效和易于维护。从核心方法来看,CompletableFuture的创建方法(supplyAsync和runAsync)方便我们启动异步任务;结果处理与转换方法(thenApply、thenAccept、thenRun等)让我们能在任务完成后对结果进行各种操作;
2025-06-04 10:18:09
820
原创 面试官灵魂拷问:如何解决多门店库存同步的超卖难题?
在多门店库存同步中避免超卖是一个复杂而关键的问题,它涉及到分布式系统、并发控制、数据一致性等多个领域。通过锁机制、事务处理、消息队列和库存预留等策略,我们可以有效地解决超卖问题,保证库存数据的准确性和业务的正常进行。同时,通过缓存的使用、批量操作以及监控与预警等优化和拓展手段,能够进一步提升系统的性能和稳定性,提高企业的运营效率。对于我们来说,深入理解这些技术和策略,并将其灵活应用到实际项目中,是解决多门店库存同步超卖问题的关键。
2025-06-03 15:33:25
1194
原创 解锁Java多级缓存:性能飞升的秘密武器
多级缓存作为提升系统性能的关键技术,在现代软件开发中扮演着不可或缺的角色。它通过在不同层次设置缓存,有效减少了数据访问的延迟,显著提升了系统的响应速度和吞吐量,增强了系统的可用性和扩展性,为用户带来了更流畅、高效的体验。在实际项目中,应根据业务需求和系统架构的特点,精心设计和合理配置多级缓存。充分发挥浏览器缓存、Nginx 缓存、Redis 缓存、JVM 进程缓存等各层缓存的优势,构建一个高效、稳定的缓存体系。同时,要关注缓存的更新策略、数据一致性等问题,确保缓存中的数据始终准确、有效。
2025-06-03 11:00:25
1266
原创 秒杀系统设计
秒杀活动是大家都熟悉的购物方式。通常的流程是这样的:商家设定活动开始和结束时间,以及投入的库存量。在活动即将开始之际,买家会不断刷新商品详情页,一旦看到购买按钮变为可点击状态,便立即点击购买、下单并结算,完成商品的购买过程。当商品库存被抢空或者活动结束时,商品变为不可售状态,买家无法继续购买。一些耳熟能详的秒杀活动案例包括小米手机的早期抢购、整点低价苹果手机、以1499元抢购茅台酒,以及疫情期间的口罩销售。
2025-05-25 21:07:51
937
原创 高并发架构设计之限流
再强大的系统,也怕流量短事件内集中爆发,就像银行怕挤兑一样,所以,高并发另一个必不可少的模块就是限流。限流是一种通过控制请求的速率或数量来保护系统免受过载的技术。流控的精髓是限制单位时间内的请求量,最大程度保障系统的可靠性及可用性。
2025-05-21 22:31:03
978
原创 面试题:什么是零拷贝技术?mmap和sendfile如何实现零拷贝,它们是否真正实现了零拷贝?
零拷贝技术并非指完全没有数据拷贝的过程,而是减少用户态和内核态的切换次数以及CPU拷贝的次数。它通常通过直接内存访问(DMA)技术和内存映射(如mmap)等机制来实现。DMA允许硬件设备(如网卡、硬盘控制器等)直接访问内存,而无需CPU的介入。在数据传输过程中,DMA控制器负责将数据从源地址传输到目标地址,从而减少了CPU的拷贝工作。内存映射技术将文件或设备的内容映射到进程的地址空间中,使得进程可以直接访问这些数据,而无需通过传统的读/写系统调用。这种方式减少了数据在用户空间和内核空间之间的拷贝次数。
2025-05-15 10:06:40
922
原创 面试题:BIO,NIO,AIO 的区别是什么?说说select 和 epoll 工作机制与差异?为何epoll 如此高效?
为了解决BIO模型的线程阻塞问题,NIO模型引入了非阻塞的概念。在NIO中,当一个线程进行IO操作时,它不会等待操作完成,而是继续执行其他任务。当IO操作完成时,线程会收到通知。非阻塞式IO一般采用轮询检查的方法进行IO操作,即:通过循环,不断检查IO资源是否已经就绪,就绪就读取,不就绪就执行其他的工作。
2025-05-14 15:36:54
702
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人