
架构
文章平均质量分 94
bxlj_jcj
折腾,努力,自律
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深入探索CDC之Canal:解锁全量与增量复制的奥秘
Canal 在数据同步方面的表现,其优势十分显著。首先是实时性,Canal 基于 MySQL 的 binlog 实时捕获数据变更,能够在数据发生变化的瞬间就将这些变更同步到目标系统 ,如前文电商案例中,订单数据的实时更新得以快速同步到 Elasticsearch 和 Redis ,为实时业务分析和用户查询提供了及时的数据支持。原创 2025-06-09 14:30:53 · 1025 阅读 · 0 评论 -
面试官灵魂拷问:如何解决多门店库存同步的超卖难题?
在多门店库存同步中避免超卖是一个复杂而关键的问题,它涉及到分布式系统、并发控制、数据一致性等多个领域。通过锁机制、事务处理、消息队列和库存预留等策略,我们可以有效地解决超卖问题,保证库存数据的准确性和业务的正常进行。同时,通过缓存的使用、批量操作以及监控与预警等优化和拓展手段,能够进一步提升系统的性能和稳定性,提高企业的运营效率。对于我们来说,深入理解这些技术和策略,并将其灵活应用到实际项目中,是解决多门店库存同步超卖问题的关键。原创 2025-06-03 15:33:25 · 1159 阅读 · 0 评论 -
解锁Java多级缓存:性能飞升的秘密武器
多级缓存作为提升系统性能的关键技术,在现代软件开发中扮演着不可或缺的角色。它通过在不同层次设置缓存,有效减少了数据访问的延迟,显著提升了系统的响应速度和吞吐量,增强了系统的可用性和扩展性,为用户带来了更流畅、高效的体验。在实际项目中,应根据业务需求和系统架构的特点,精心设计和合理配置多级缓存。充分发挥浏览器缓存、Nginx 缓存、Redis 缓存、JVM 进程缓存等各层缓存的优势,构建一个高效、稳定的缓存体系。同时,要关注缓存的更新策略、数据一致性等问题,确保缓存中的数据始终准确、有效。原创 2025-06-03 11:00:25 · 1240 阅读 · 0 评论 -
秒杀系统设计
秒杀活动是大家都熟悉的购物方式。通常的流程是这样的:商家设定活动开始和结束时间,以及投入的库存量。在活动即将开始之际,买家会不断刷新商品详情页,一旦看到购买按钮变为可点击状态,便立即点击购买、下单并结算,完成商品的购买过程。当商品库存被抢空或者活动结束时,商品变为不可售状态,买家无法继续购买。一些耳熟能详的秒杀活动案例包括小米手机的早期抢购、整点低价苹果手机、以1499元抢购茅台酒,以及疫情期间的口罩销售。原创 2025-05-25 21:07:51 · 919 阅读 · 0 评论 -
高并发架构设计之限流
再强大的系统,也怕流量短事件内集中爆发,就像银行怕挤兑一样,所以,高并发另一个必不可少的模块就是限流。限流是一种通过控制请求的速率或数量来保护系统免受过载的技术。流控的精髓是限制单位时间内的请求量,最大程度保障系统的可靠性及可用性。原创 2025-05-21 22:31:03 · 951 阅读 · 0 评论 -
高并发下幂等解决方案
在当今互联网应用中,高并发场景无处不在:电商秒杀活动、金融支付系统、社交网络互动... 这些场景下,系统每秒钟需要处理成千上万的请求。但网络的不确定性、客户端的重试机制、用户的重复点击,都可能导致同一个请求被多次提交。如果没有恰当的防护措施,轻则导致数据不一致,重则引发资金损失等严重问题。在分布式系统中幂等已经成为了保障业务可靠性的关键技术。它指的是。接下来我们就来看看高并发下幂等解决方案。原创 2025-05-13 14:47:50 · 675 阅读 · 0 评论 -
如何实现Redis和Mysql中数据双写一致性
今天我们来聊聊一个在分布式系统中非常常见但又十分棘手的问题——Redis与MySQL之间的双写一致性。我们在项目中多多少少都遇到过类似的困扰,缓存是用Redis,数据库是用MySQL,但如何确保两者之间的数据一致性呢?接下来我会尽量简洁地为大家解析这个问题,并提供几个实战方案。原创 2025-04-28 10:44:05 · 1282 阅读 · 0 评论 -
高并发架构设计之缓存
高并发是指系统或应用程序在同一时间段内接收到大量并发请求的能力。具体来说,高并发环境下系统需要能够同时处理大量的请求,而不会出现性能问题或响应延迟。浏览器缓存是指将网页中的资源(如HTML、CSS、JavaScript、图像等)存储在用户的浏览器内部,以便在后续请求同一资源时可以直接从本地缓存中获取,而无需再次从服务器下载。客户端缓存是将数据存储在浏览器中,以提高访问速度和减少服务器请求。原创 2025-04-27 11:27:30 · 1282 阅读 · 0 评论 -
高性能数据库集群:分库分表
前面我们已经介绍了另一种高性能数据库集群,读写分离,其本质是将访问压力分散到集群中的多个节点,但是没有分散存储压力,随着用户数量的增加,数据量激增,数据存储将会是我们系统的瓶颈所在,因此就有了第二种高性能数据库集群,分库分表方案,这种方案既可以分散访问压力,又可以分散存储压力,完美解决了我们现有的系统瓶颈,接下来我们看看,分库分表这种方案。原创 2025-04-22 17:09:23 · 833 阅读 · 0 评论 -
高性能数据库集群:读写分离
高性能数据库集群有多种,第一种方式是“读写分离”,其本质是将访问压力分散到集群中的多个节点,但是没有分散存储压力;第二种方式是“分库分表”,既可以分散访问压力,又可以分散存储压力。本文主要介绍“读写分离”这种高性能数据库集群。原创 2025-04-14 11:07:11 · 959 阅读 · 0 评论