
傅里叶变换
文章平均质量分 88
Code Writers
全栈领域新星创作者,2023年博客之星Top95,阿里云专家博主、星级博主、技术博主,2022博客之星入围,6月城市(成都)之星Top8,2023新星计划潜力新星。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
高等数学:傅里叶变换(五)
同理, 对于离散傅里叶反变换, 我们只需要将傅里叶正变换中乘上的单位根变为其共轭复数, 分治完的每一项除以 n 即可得到原多项式的每一项系数.对按行 FFT 变换后的结果, 对每一列进行FFT变换, 变换结果仍然按列存入一个二维数组中, 该数组即为 2 维FFT变换结果.若 M=N, 则时间复杂度可以简化为 O(N^2\log N), 优于暴力算法的 O(N^{3}).因此我们可以将自顶向下的递归算法改为自底向上的循环算法, 可以实现算法常数级别的优化.倒置后的编号为 {0,4,2,6,1,5,3,7}.原创 2023-08-28 15:46:22 · 312 阅读 · 0 评论 -
高等数学:傅里叶变换(四)
我们在 \tilde{F}(\mu) 的一个周期 \displaystyle [0, \frac{1}{\Delta T}] 上采样 M 个样本, 即通过。可以看出表达式不依赖采样间隔和频率间隔, 因此适用于任何均匀取样的有限离散样本集.可以看出, 如果周期过于相近的话, 会产生缠绕错误, 所以我们要在。没有完全解决缠绕问题, 但是问题不大, 因为图像已经经过零填充了。该式给出了一个二维周期序列中的一个周期, 因此也被称为循环卷积。, 选择填充参数 P 和 Q. 典型地, 我们选择。原创 2023-08-28 15:41:17 · 272 阅读 · 0 评论 -
高等数学:傅里叶变换(三)
尤其是有限持续时间函数 (即有限长度采样), 有限持续时间函数必然是不带限的, 因此混淆是不可避免的.抗混淆一定是事先防止或减轻混淆, 通过平滑输入函数,减少高频分量来实现抗混淆.实际上, 还有另外一种傅里叶变换的定义方法, 即傅里叶变换对。可见采样后函数的傅里叶变换是无限周期性拷贝的, 间隔。但是带限函数这个要求太严格了, 很少有函数能够做到.和先前的傅里叶变换不一样之处在于系数的不同.冲激串的傅里叶变换还是冲激串, 但是周期由。来说, 其傅里叶变换后的非零频率属于。采样后函数的傅里叶变换。原创 2023-08-28 11:20:47 · 219 阅读 · 1 评论 -
高等数学:傅里叶变换(二)
傅里叶变换反应频谱密度, 因此周期信号的傅里叶变换不是有限值, 是冲激函数, 表明在无穷小的频带范围内取得无穷大的频谱值.的相位函数, 代表信号中各频率分量之间的相位关系. 二者对应的曲线分别称为幅度频谱和相位频谱.处的冲激信号组成, 冲激信号的强度等于对应傅里叶级数系数的。的周期延拓 (重复), 时域的离散化导致了频域的周期性.反之亦然, 因此一个域的离散化和另一个域的周期性相对应.的模, 代表信号中各频率分量的相对大小,的频谱函数, 一般是复函数, 可以写作。周期信号的频谱是离散的.原创 2023-08-28 11:15:34 · 1030 阅读 · 52 评论 -
高等数学:傅里叶变换(一)
xt∗ht∫−∞∞xτht−τdτ对于脉冲函数δt来说xt∗δt∫−∞∞xτδt−τdτxt这也相等于说明了函数可以看作一个无穷维的向量, 其中δt−τ是一系列正交基.原创 2023-08-28 11:06:36 · 681 阅读 · 0 评论