- 博客(75)
- 收藏
- 关注
原创 分布式时序数据库的特点解析
分布式时序数据库通过专门的设计解决了时序数据场景下的特殊挑战,成为物联网、APM、金融科技等领域的核心技术组件。随着边缘计算和5G技术的发展,具备边缘协同能力的下一代时序数据库将成为新的演进方向。企业在选型时应根据自身的数据规模、查询模式和扩展需求,选择最适合的分布式时序数据库解决方案。
2025-07-29 10:23:19
124
原创 时序数据库IoTDB的优势场景分析
在当今数据爆炸的时代,物联网(IoT)设备产生的时序数据呈指数级增长。面对海量、高频的时序数据处理需求,传统关系型数据库显得力不从心。Apache IoTDB(物联网数据库)作为一款专为物联网场景设计的时序数据库,凭借其独特架构在多个领域展现出显著优势。本文将深入探讨IoTDB最具竞争力的应用场景,帮助技术选型者做出明智决策。
2025-07-28 11:42:34
483
原创 时序数据库IoTDB的核心功能特性
Apache IoTDB(Internet of Things Database)是一款专门为物联网场景设计的高性能时序数据库管理系统,由清华大学发起并贡献给Apache基金会。它针对物联网数据的特点进行了深度优化,提供了高效的数据存储、查询和管理能力,广泛应用于工业物联网、智能制造、智能交通、能源电力等领域。Apache IoTDB凭借其专业的时序数据管理能力、高效的存储引擎和丰富的生态系统,已成为物联网数据处理领域的重要基础设施。
2025-07-24 10:43:32
431
原创 时序数据库主流产品概览
时序数据是带时间戳记录的数据点序列,具有以下特点:数据时间属性强数据通常为追加写入近期数据访问频率高于历史数据数据量通常非常庞大,需要高效的压缩技术时序数据库针对这些特点进行了专门优化,在数据存储结构、写入吞吐量、查询效率等方面相比传统关系型数据库有明显优势。Apache IoTDB(Internet of Things Database)是由清华大学发起并贡献给Apache基金会的开源时序数据库,专为物联网场景设计,具有高效存储和查询、低存储成本、丰富的生态集成等特点。
2025-07-23 08:54:37
499
原创 时序数据库IoTDB好不好?
时序数据库IoTDB(Internet of Things Database)是专为物联网场景设计的一款开源时序数据库系统,由清华大学团队开发并贡献给Apache基金会。经过多年发展,IoTDB已经在工业物联网、车联网、能源电力等多个领域得到广泛应用。那么IoTDB究竟好不好?下面我将从几个核心优势来分析。
2025-07-22 18:42:11
514
原创 时序数据库在工业物联网领域的核心优势与应用价值
传统关系型数据库在面对这些需求时表现捉襟见肘,而时序数据库(Time Series Database,TSDB)凭借其专门设计的数据模型和存储引擎,成为工业物联网数据管理的理想解决方案。时序数据库作为工业物联网的数据基石,正在帮助制造企业释放数据价值,推动智能制造转型升级。随着技术的不断演进,其在工业领域的应用深度和广度将持续扩展,成为工业4.0不可或缺的基础设施。某钢铁冶炼厂商采用IoTDB后,数据压缩比约为1/10,查询可覆盖长达10年的设备数据降采样分析。:融合时序数据与关系型、文档型数据管理。
2025-07-21 15:29:24
835
原创 工业物联网中的时序数据库应用
工业物联网(Industrial Internet of Things, IIoT)通过传感器、边缘计算和云计算等技术,实现设备数据的实时采集、存储与分析,以提高生产效率、预测设备故障并优化资源管理。(一款开源的时序数据库,专为工业物联网设计)为例,探讨时序数据库在 IIoT 中的应用场景、技术优势及实践案例。的时序数据,传统数据库(如 MySQL、Oracle)难以满足其高吞吐写入、低延迟查询和高效存储的需求。IoTDB 作为 IIoT 领域的代表,其轻量级、高吞吐的特性将持续推动工业智能化发展。
2025-07-17 11:59:13
655
原创 时序大模型为时序数据库带来的变革与机遇
时序数据(Time Series Data)作为记录系统状态随时间变化的重要数据类型,在物联网、金融交易、工业监控等领域呈爆炸式增长。传统时序数据库专注于高效存储和查询时序数据,而时序大模型(Time Series Foundation Models)的出现,正在为这一领域带来革命性的变化。也已经有时序数据库(例如 IoTDB)开始做时序大模型嵌入的探索与实践。
2025-07-16 18:58:07
417
原创 时序数据库与AI的融合:智能时代的数据基石
时序数据库与AI的深度融合正在重塑我们理解和利用时间维度数据的方式。这种融合不仅是技术的简单叠加,而是创造了一种新型的数据基础设施——它能够自主感知环境变化、实时分析趋势模式、主动预测未来状态,并为决策提供智能支持。随着5G、物联网等技术的普及,时序数据的规模和重要性将持续增长。企业需要积极布局时序数据库与AI的融合架构,构建面向未来的数据智能平台。那些能够有效采集、存储和分析时序数据,并将其转化为业务洞察和自动化行动的组织,将在数字化竞争中占据显著优势。
2025-07-15 15:39:11
683
原创 时序数据库处理的时序数据独特特性解析
时序数据的这些独特特性,使得通用数据库系统在处理时序数据时往往效率低下。专业的时序数据库通过针对这些特性的深度优化,能够在存储效率、写入吞吐、查询性能等方面实现数量级的提升。随着物联网和边缘计算的快速发展,理解时序数据的这些特性对于设计和选择合适的数据基础设施至关重要。未来时序数据库的发展,如AI驱动的自适应压缩、智能降采样、时序异常检测内置支持等创新,仍将围绕这些核心数据特性展开。
2025-07-14 11:50:40
944
原创 时序数据库的存储之道:从数据特性看技术要点
时序数据存储是物联网、IT运维等领域的基石技术。通过理解数据特性、选择适合的时序数据库如IoTDB,并合理设计存储策略,企业能够构建高效、经济的数据基础设施,为实时监控、预测分析等应用提供强大支撑。随着数据量持续爆发,时序数据库的创新存储方案将发挥越来越关键的作用。
2025-07-10 11:14:05
295
原创 如何选择时序数据库:关键因素与实用指南
选择时序数据库没有放之四海而皆准的答案,最佳选择取决于具体的业务需求、技术栈和团队专长。建议从小规模概念验证开始,逐步验证各项关键指标,最终选择既能满足当前需求又具备良好扩展性的解决方案。记住,数据库迁移成本往往很高,前期的充分评估能为未来省去许多麻烦。
2025-07-09 16:12:57
308
原创 IoTDB:专为物联网场景设计的高性能时序数据库
IoTDB(Internet of Things Database)是一款开源的时序数据库管理系统,专为物联网(IoT)场景设计,由清华大学软件学院团队自研,天谋科技团队负责维护。它针对物联网数据的特点进行了深度优化,能够高效地管理大量时间序列数据,支持物联网设备的高频数据采集、存储、查询和分析。随着物联网技术的快速发展,高效管理时序数据的需求日益增长。IoTDB作为一款专门为物联网设计的时序数据库,凭借其高性能、低成本和易用性,正在成为越来越多物联网项目的首选数据管理解决方案。
2025-07-08 19:32:34
445
原创 时序数据库:高效处理时间序列数据的核心技术
时序数据库(Time Series Database,TSDB)是一种专门为存储、处理和查询时间序列数据而优化的数据库系统。随着物联网、金融科技、工业互联网等领域的快速发展,时序数据呈现出爆炸式增长,传统的关系型数据库在处理这类数据时面临诸多挑战,时序数据库应运而生并成为关键技术解决方案。
2025-07-08 19:26:51
439
原创 时序数据库IoTDB用户自定义函数(UDF)使用指南
时序数据库IoTDB为用户提供了编写UDF的JAVA API,用户可以自主实现UDTF(用户自定义转换函数)类,IoTDB将通过类加载机制装载用户编写的类。如果使用Maven,可以从Maven库中搜索以下依赖,并确保依赖版本与目标IoTDB服务器版本相同。
2025-07-03 09:46:15
340
原创 Java类加载机制及关于时序数据库IoTDB排查
类加载是指将类的.class文件中的二进制数据读入内存,并创建对象的过程。该对象封装了类在方法区的数据结构,并提供访问接口。类加载器在预料类将被使用时,可预先加载,若.class文件缺失或错误,则在首次主动使用时报告错误。通过类的全限定名获取二进制字节流。将字节流转换为方法区的运行时数据结构。在Java堆中创建代表该类的对象。
2025-07-02 12:31:22
291
原创 为什么时序数据库IoTDB选择Java作为开发语言
IoTDB选择Java作为开发语言,是基于大数据生态融合、成熟的数据结构与算法、高集成度与易掌握性、代码可读性、高效的异常处理、广泛的平台兼容性、强大的项目管理工具以及高性能表现等多方面考量。Java不仅能做数据库,而且很合适,这是经过实践验证的结论。
2025-07-01 10:50:45
273
原创 时序数据库IoTDB监控指标采集与可视化指南
在右侧的Panel Options、Tooltip、Legend、Graph Styles、Axis、Standard options等区域中,调整面板的标题、描述、图例、线的样式、轴信息、单位、配色等属性。:irate(http_requests_total{job="api-server"}[5m])表示基于过去5分钟内的最后两个数据点计算HTTP请求的每秒速率。:计算范围向量中时间序列的每秒瞬时增长率,适用于易变的、快速移动的计数器。:与聚合运算符或随时间聚合的函数结合使用时,应先使用rate()。
2025-06-30 10:24:40
394
原创 如何打造Apache Top-Level开源时序数据库IoTDB
IoTDB作为Apache顶级开源时序数据库项目,通过开源的方式汇聚了全球贡献者的力量,实现了快速迭代和广泛应用。未来,随着时序数据市场的不断增长,IoTDB有望在更多领域发挥重要作用,推动中国数据库软件的发展。
2025-06-25 14:34:38
995
原创 时序数据库IoTDB可实现的基本操作及命令汇总
通过本文,您应该对Apache IoTDB的数据写入、删除、导出、元数据管理及时区设置有了全面的了解。希望这些信息能帮助您更好地使用IoTDB。
2025-06-24 17:44:42
993
原创 时序数据库IoTDB数据导入与查询功能详解
以实际工业应用场景为例,我们提供了一个测试用的 CSV 格式数据表格,该表格记录了某集团高山风机的轮毂温度数据。通过本文,我们详细了解了 Apache IoTDB 的数据导入和查询功能,包括如何导入 CSV 数据、使用 SQL 语句写入和查询数据,以及如何进行聚合查询和控制空值填充。这些功能为时间序列数据的处理提供了强大的支持。
2025-06-23 17:15:25
424
原创 时序数据库IoTDB的架构、安装启动方法与数据模式总结
综上所述,IoTDB具有高效的时序数据处理能力,其架构灵活、安装启动简便,且数据模式贴合物联网实际应用场景,为时序数据管理提供了强有力的支持。
2025-06-22 21:52:41
530
原创 时序数据库概念及IoTDB特性详解
数据,如同空气般普遍存在于我们的数字生活中,每一次点击手机都可能产生并记录数据。这些数据被存储在数据库中,而数据库实质上是“数据的集合”。数据库管理系统(DBMS)则负责这些“数据容器”的管理,包括安全存储、增删查改等操作。DBMS是软件开发者进行交互的工具,而非直接给终端用户使用的产品;终端用户接触的是数据库系统,它涵盖数据库、DBMS及应用系统。
2025-06-19 16:12:55
418
原创 时序数据库双存储引擎技术解析
单元时间序列:适用于单分量场景,写入持久化速度快,磁盘占用少,查询性能略优。多元时间序列:分量数大于1且空值比例低时,写入持久化速度提升显著,磁盘空间节省近半,查询性能在多分量场景下优于单元时间序列。Apache IoTDB的双存储引擎架构为高效管理海量时间序列数据提供了创新解决方案,满足了不同业务场景的多样化需求。
2025-06-18 16:05:36
498
原创 时序数据库IoTDB特性:支持对齐时间序列功能解析
时序数据库IoTDB引入的对齐时间序列功能,是其数据模型的一次重要创新。通过同时支持非对齐存储和对齐存储两种方式,IoTDB能够更好地适配不同的采集场景和需求,为时序数据的管理提供了更加灵活和高效的解决方案。
2025-06-17 09:52:39
397
原创 时序数据库的起源与基础概念简介
数据库(Database):本质上为静态信息的集合,也可称为数据集。例如《学位论文数据库》、《中国经济金融数据库》等,主要用于存储和搜索特定领域的材料。数据库管理系统(Database Management System,DBMS):专门用于管理数据库的系统,内部维护数据集合,支持数据的写入和按条件查询。DBMS并非直接为终端用户设计,而是供软件开发者通过特定编程语言进行交互,通常所说的数据库内核研发即指DBMS的研发。数据库系统(Database System):包括数据库、数据库管理系统以及
2025-06-16 15:07:27
477
原创 时序数据库IoTDB数据模型建模实例详解
在实时库、InfluxDB、OpenTSDB等数据库中,每个测点通常有一个由符号"."连接的多个属性值组成的名称(标签)。例如,在电厂应用中,测点名称可能是“电厂名称.机组.测点编码”。如果将所有测点的数据理解成一张表,则时间和测点名称构成联合主键。在InfluxDB和OpenTSDB中,每条数据包含tag和field的概念,上述数据通常被定义为3个tag和1个field,时间和所有tag列构成联合主键。IoTDB中的时间序列定义为一个测点不断采集数据,每个数据点带有时间戳,形成一条时间序列。
2025-06-11 10:14:06
516
原创 使用EMQ X规则引擎将MQTT数据实时插入时序数据库IoTDB
通过本文的介绍,我们成功实现了通过EMQ X规则引擎功能将消息持久化到IoTDB时序数据库。在实际生产场景中,这一组合方案能够高效地处理物联网设备的并发连接,灵活处理业务功能,并将设备发送的消息持久化到IoTDB数据库,进而实现大数据分析、可视化展示等功能。EMQ X + IoTDB的组合是一个简洁、高效、易扩展且高可用的服务端集成方案,适用于物联网设备管理和数据处理场景。
2025-06-10 09:56:03
977
原创 时序数据库IoTDB在工业物联网时序数据管理中的应用
本文主要总结了IoTDB在工业物联网时序数据采集、存储、查询分析以及可视化等方面的能力。通过解析工业设备上的传感器数据采集、传输、存储及查询分析过程,帮助用户更好地理解IoTDB的实际应用。本文通过解析工业物联网时序数据的采集、存储、可视化、传输、查询及分析等过程,全面展示了IoTDB在实际应用中的强大功能。IoTDB以其高效的数据处理能力、灵活的数据存储方式以及丰富的数据分析手段,为工业物联网领域的数据管理提供了有力的支持。
2025-06-09 16:34:53
709
原创 时序数据库IoTDB结合SeaTunnel实现高效数据同步
Apache IoTDB是一款专为工业物联网设计的时序数据库管理系统,集数据收集、存储、管理与分析于一体,满足海量数据存储、高速读取及复杂数据分析需求。其架构包括时序文件(TsFile)、数据库引擎和分析引擎三部分。TsFile是IoTDB自研的时序数据文件格式,支持高效压缩与查询。
2025-06-08 15:17:46
1136
原创 时序数据库IoTDB的UDF Sample算法在数据监控、故障预防的应用
该算法在采样过程中考虑数值部分的变化,计算每个数据点与周围相邻数据点组成的三角形面积,并保留面积最大的点。在图示案例中,采用该算法后,12小时中的一小段异常数据能够在7天的抽样数据中得到几乎完整的保留。一个简单的方法是将当前数据与过去的数据进行对比。物联网传感器每秒采集一次切削液的压力数据,通过IoTDB的数据可视化功能,可以清晰地看到数据中存在的快速压力变化,这通常与加工中心的换刀操作相关。物联网采集的数据是连续不间断的,因此在展示长时间范围的数据时,需要对数据进行抽样以降低数据量。
2025-06-05 16:40:11
738
原创 时序数据库IoTDB与EdgeX Foundry集成适配服务介绍
:由Linux基金会运维的开放源码边缘计算软件框架,自2017年开源后广泛应用于全球各行业场景。VMware自2018年起在中国社区推广EdgeX技术,拓展生态,并持续贡献代码。IoTDB:由Apache基金会运维的时序数据库管理系统,提供数据收集、存储和分析服务。创始团队来自清华大学软件学院,领导IoTDB社区的开发和推广。
2025-06-04 11:42:34
440
原创 为什么说 IoTDB 是面向工业物联网的时序数据库管理系统?
IoTDB是一款专为工业物联网设计的时序数据库管理系统。时序数据指按时间戳递增排列的采集数据,通常由设备或传感器采集,如设备工况数据。IoTDB在不同领域为用户带来显著助力,如电力行业能提升风机发电效率,制造业能提升产品质量和良品率,轨道交通领域能优化车辆油耗。
2025-06-03 12:11:24
462
原创 时序数据库IoTDB基于云原生的创新与实践
Apache IoTDB 是一款独立自研的物联网时序数据库,作为 Apache 基金会的顶级项目,它融合了产学研的优势,拥有深厚的科研基底。IoTDB 采用了端边云协同的架构,专为物联网设计,致力于提供极致的性能。Apache IoTDB 以其独特的数据模型、优化的存储引擎、创新的分布式架构和高效的查询框架,在物联网时序数据库领域展现出了强大的竞争力。通过云原生的设计,IoTDB 能够灵活应对物联网场景下的复杂需求,为用户提供极致的性能体验。
2025-05-29 15:05:08
665
原创 时序数据库IoTDB如何快速高效地存储时序数据
时序数据库IoTDB的新架构旨在实现两个主要目标:在资源充足的场景下提供无上限的服务潜力,以及在资源有限的场景下提供最佳选择。支持多模式:同时支持单机模式和分布式模式。大容量:可管理上亿设备和测点,数据量无上限。高可用性:能够容忍部分节点失效,实现系统高可用。高扩展性:随时进行集群扩容,平滑过渡到更大规模的集群。高性能:写入吞吐达到数千万点每秒。可观测性:对系统集群的核心性能进行监控。ConfigNode:管理集群节点和分区表信息,负责任务调度和负载均衡。
2025-05-28 17:30:42
746
原创 时序数据库IoTDB安装学习经验分享
在成功运行sbin\start-standalone.bat后,我尝试通过sbin\start-cli.bat连接到服务器,但收到了连接错误的提示。经过尝试,我发现解决方案是在启动服务端应用程序的窗口不要关闭的情况下,再开一个cmd窗口输入连接命令。在安装IoTDB时,我遇到了“无法加载主类”的错误,这通常表明Java环境存在问题。在尝试启动IoTDB时,我遇到了一个奇怪的问题:运行文件后没有任何输出或报错,也没有后续的运行结果。在尝试连接时,我找不到IoTDB的选项,后来发现是因为缺少IoTDB的驱动。
2025-05-27 11:23:10
591
原创 时序数据库IoTDB启动方式及集群迁移指南
强烈推荐使用主机名启动IoTDB,以实现更高的灵活性和便捷性。特别是在集群迁移场景中,通过主机名启动的IoTDB能够大大简化迁移过程,减少不必要的配置和数据迁移工作。
2025-05-27 00:03:23
624
原创 DeepSeek:以开源之力,引领AI技术新风潮
DeepSeek的开源策略不仅让其成为了AI技术市场的领跑者,更成为了颠覆AI垄断、引领技术创新方向的“利器”。开源的开放精神与创新火种,让DeepSeek纯粹地拥抱了全球开发者的智慧与热情,实现了撼动AI产业的巨大影响力。未来,期待开源的力量继续推动DeepSeek不断进步,引领AI技术的新风潮。
2025-05-22 14:46:16
560
原创 分布式集群中的共识算法及其在时序数据库IoTDB中的应用
Raft:一种基于领导者的强一致性共识算法,易于理解和实现。它要求每次写入都得到大多数节点的响应,并持久化日志,因此性能相比弱一致性算法有所差距,且可用性较差。Quorum:无主共识算法的代表,通过读修复和反熵机制保证数据间的最终一致性。其一致性级别较低,但可以根据读写需求平衡读写最小票数来获得更好的性能。
2025-05-21 09:50:48
435
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人