本文是Stable Diffusion等一系列扩散模型的里程碑,主要解决的问题是Diffusion模型在原始的像素空间中需要的计算资源过多的问题。
提炼本文创新如下:
一、隐空间(低维向量空间)
引入了一个与图像空间感知上等同的隐空间,使用自编码器进行隐空间和像素空间的变换,忽略了一些对于感知无关的信息,进行加噪去噪都是在这个空间中进行的。
因此,能够显著减少计算复杂度。这样做有几个好处:
1.避免高维度图像空间,可以在低维度空间(去除了一些高频特征)。
2.利用了U-Net的归纳偏好(即卷积操作的局部性和平移等变性),对有空间结构的数据很有效,因此能够减少之前方法中会降低质量的压缩方法的需要。
3.得到了一个可以被用于通用目标的压缩模型,这种模型可以被用于训练一些下游的产生模型,比如单个图像的Clip生成。
一、
具体做法:
给定一个输入,使用编码器将输入图像的特征进行编码到一个按比例缩小的小空间,然后再用解码器还原其特征。
经过后续的验证,在这个潜在