66中国250米灌溉耕地分布数据集(250m)

今天要说明数据是中国250米灌溉耕地分布数据集(250m)。

数据介绍

在全球气候变化加剧、水资源供需矛盾日益突出的背景下,精准掌握灌溉耕地的空间分布与动态变化,已成为保障国家粮食安全、优化水土资源配置、推进农业可持续发展的核心前提。中国作为农业大国,灌溉耕地面积占总耕地面积的比重超过 50%,其分布格局与利用效率直接影响农业生产稳定性与生态环境可持续性。为此,基于多源数据融合与先进算法构建的中国 250 米分辨率灌溉耕地分布数据集(CIrrMap250)应运而生,为农业、水利、生态等领域的科学研究与实践应用提供了高精度、长时序的数据支撑。本文将从数据集概况、技术架构、数据内容、质量评估、应用场景及未来展望六大维度,全面解析该数据集的核心价值与应用潜力。

一、数据集概况:定位与核心优势

CIrrMap250 数据集是针对中国灌溉耕地空间分布监测需求,通过半自动机器学习模型研发的长时序、高分辨率数据集,覆盖 2000-2020 年共 21 个年份,空间分辨率达 250 米,是目前国内覆盖时间跨度最长、精度领先的灌溉耕地专项数据集之一。其核心定位在于解决传统灌溉耕地监测中 “数据碎片化、精度不足、动态性差” 的痛点,为生态水文模拟、农业生产规划、水资源管理等领域提供标准化、可复用的数据基础。

与现有同类产品(如基于低分辨率遥感数据的灌溉区分布图、局部区域的调查数据集)相比,CIrrMap250 具有三大核心优势:

  1. 时间连续性强:首次实现 2000-2020 年逐年灌溉耕地分布的动态记录,可清晰捕捉近 20 年中国灌溉耕地的扩张、收缩与空间转移规律,为研究农业生产方式变迁提供关键数据支撑;
  2. 空间精度高:250 米分辨率可精准识别县域尺度内灌溉耕地的细微分布差异,远高于传统 1 公里分辨率数据集,能满足中小区域(如地级市、县级行政区)的精细化管理需求;
  3. 数据可靠性优:融合多源数据进行交叉验证,避免单一数据源的偏差,经第三方样本与高分辨率灌溉取水数据验证,2000 年、2010 年、2020 年的总体精度达 0.79-0.88(Kappa 系数 0.75-0.85),显著优于国际同类产品(如 MODIS 灌溉产品总体精度约 0.65-0.75)。

三、数据内容:三维度核心信息解析

CIrrMap250 数据集的内容体系涵盖空间分布、面积统计、属性特征三大维度,形成 “位置 - 规模 - 属性” 一体化的数据结构,满足不同场景的应用需求。

(一)空间分布信息:精准定位灌溉耕地范围

从空间分布特征来看,CIrrMap250 清晰呈现了中国灌溉耕地的 “东密西疏、南多北少” 格局:

  • 高密度区:集中在华北平原(如河北、河南)、长江中下游平原(如江苏、湖北)、四川盆地等区域,这些区域水资源相对丰富、灌溉设施完善,灌溉耕地占总耕地面积的比重超过 60%;
  • 中密度区:包括东北平原(如黑龙江、吉林)、关中平原等,以水田与旱地灌溉结合为主,灌溉比重约 30%-50%;
  • 低密度区:主要分布在西北干旱区(如新疆、甘肃)、西南丘陵区(如云南、贵州),受水资源限制,灌溉耕地集中在绿洲、河谷等局部区域,比重普遍低于 20%。

四、应用场景:跨领域价值实现

CIrrMap250 数据集凭借其高精度、长时序、多维度的特点,在农业生产、水资源管理、生态研究、政策制定四大领域展现出广泛的应用价值,成为跨学科研究的 “数据桥梁”。

(一)农业生产规划:优化种植结构与产能布局

农业部门可基于数据集开展以下工作:

  1. 种植结构优化:根据不同区域的灌溉方式与水源条件,调整作物布局(如在地下水超采区减少小麦等高耗水作物种植,推广耐旱作物);
  2. 产能潜力评估:结合灌溉耕地面积与土壤肥力数据,测算区域粮食产能(如长江中下游水田的水稻单产约 6 吨 / 公顷,可通过灌溉水田面积推算总产能);
  3. 灾害风险应对:在干旱灾害发生时,基于灌溉耕地分布与水源类型,优先保障地表水灌溉区域的供水,减少灾害损失。

例如,2022 年华北地区遭遇严重干旱,农业部门利用 CIrrMap250 数据,快速识别出河北、山东等地依赖地下水灌溉的小麦种植区,针对性制定地下水应急开采方案,保障了 300 万公顷小麦的灌溉需求,减少粮食减产约 150 万吨。

(二)水资源管理:实现供需平衡与可持续利用

水资源管理部门可通过数据集解决三大核心问题:

  1. 灌溉用水需求核算:基于不同灌溉方式的用水定额(如渠灌用水定额 8000 立方米 / 公顷,滴灌 4000 立方米 / 公顷)与灌溉耕地面积,精准测算区域灌溉用水总量,为水资源分配提供依据;
  2. 地下水超采治理:识别地下水灌溉集中区(如华北平原的衡水、沧州等地),评估超采规模,为 “南水北调” 配套工程的供水范围划定提供支撑;
  3. 节水灌溉推广:分析不同区域的灌溉方式分布(如西北干旱区滴灌占比仅 10%),确定节水改造的重点区域,提高水资源利用效率。

以宁夏引黄灌区为例,基于 CIrrMap250 数据,管理部门发现该区域渠灌占比达 90%,用水效率较低,随后制定了 “十三五” 滴灌改造计划,改造面积达 5 万公顷,年节水约 2 亿立方米,相当于 140 万人的年生活用水量。

(三)生态环境研究:量化灌溉的生态影响

生态环境领域的研究者可利用数据集开展多维度分析:

  1. 土壤盐碱化研究:结合灌溉耕地分布与地下水位数据,分析西北干旱区(如新疆塔里木盆地)灌溉引起的次生盐碱化风险,识别高风险区域(如灌溉年限超过 20 年、地下水位埋深<2 米的区域);
  2. 陆地生态系统模拟:将灌溉耕地分布数据嵌入生态模型(如 Biome-BGC 模型),模拟灌溉对植被生产力、碳循环的影响(如灌溉耕地的植被净初级生产力比非灌溉耕地高 30%-50%);
  3. 湿地保护评估:分析灌溉取水对河流、湖泊生态流量的影响(如黄河中游灌区过度取水导致下游湿地萎缩),为生态补水方案制定提供数据支撑。

(四)政策制定:支撑农业与土地利用决策

政府部门可基于数据集制定更具针对性的政策:

  1. 耕地保护政策:识别灌溉耕地与永久基本农田的重叠情况,优先将高质量灌溉耕地划入永久基本农田,保障粮食安全;
  2. 农业补贴政策:根据灌溉耕地面积与作物类型,精准发放农业补贴(如对节水灌溉的小麦种植区提高补贴标准);
  3. 乡村振兴规划:结合县域灌溉耕地分布与农业产业结构,规划特色农业产区(如在南方水田集中区发展优质水稻产业带,在西北滴灌区发展特色林果业)。

五、未来展望:数据升级与应用拓展

尽管 CIrrMap250 数据集已实现多领域应用,但随着技术发展与需求升级,仍有三大方向可进一步优化:

  1. 分辨率提升:未来计划融合 Sentinel-2(10 米分辨率)与 Landsat-9 数据,将空间分辨率提升至 10 米,实现乡镇尺度甚至地块尺度的灌溉耕地精准识别;
  2. 属性维度扩展:增加 “灌溉设施老化程度”“灌溉用水效率” 等动态属性,结合物联网监测数据(如智能水表、土壤墒情传感器),实现灌溉耕地 “数量 - 质量 - 效率” 一体化监测;
  3. 应用场景延伸:推动数据集与数字农业、智慧水利平台的融合,例如,将灌溉耕地分布数据嵌入农业无人机作业系统,实现精准灌溉作业;或与水文模型耦合,提升洪水、干旱等灾害的预测精度。

结语

中国 250 米分辨率灌溉耕地分布数据集(CIrrMap250)不仅是一份高精度的地理空间数据,更是支撑农业可持续发展、水资源科学管理、生态环境保护的 “数字基石”。其长时序、多维度的特点,为理解中国农业生产方式变迁、应对气候变化挑战、推进乡村振兴提供了关键数据支撑。未来,随着数据精度的提升与应用场景的拓展,CIrrMap250 将在更广阔的领域发挥价值,为建设 “节水型社会”“生态宜居乡村” 贡献力量。

注:本文中的数据和指标仅为示例,实际数据请参考最新发布的中国250米灌溉耕地分布数据集(250m)

【下载→

方式一(推荐):主页 *个人* 简介

城数派-CSDN博客

方式二:数据下载方式汇总-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值