🌞欢迎莅临我的个人主页👈🏻这里是我专注于深度学习领域、用心分享知识精粹与智慧火花的独特角落!🍉
🌈如果大家喜欢文章,欢迎:关注🍷+点赞👍🏻+评论✍🏻+收藏🌟,如有错误敬请指正!🪐
🍓“请不要相信胜利就像山坡上的蒲公英一样唾手可得,但是请相信生活中总有美好值得我们全力以赴,哪怕粉身碎骨!”🌹
目录
引言:随着信息化的发展,计算机阅卷已经成为一种常规操作。在大型考试中,客观题基本不再 需要人工阅卷。本项目旨在开发一个基于OpenCV的高效答题卡识别系统,通过先进的图像处理和模式识别技术,实现对答题卡的快速准确分析。
文章所有资源请看文末!
透视变换矫正
假如有一张答题卡平放在地面上,那我们怎样去找到答题卡的边界轮廓呢?
答案是透视变换。首先我们需要找到答题卡的轮廓才能对选项做各种处理呀,接下来就是对透视变换的方法说明了。
假设原始图像中的点为,目标图像中的对应点为
。透视变换可以用一个 3x3 的矩阵
来描述:
其中,矩阵的元素取决于原始四边形和目标四边形顶点的坐标。其核心原理在于通过建立原始图像和目标图像之间的对应点关系,来计算一个变换矩阵。
综上所述,使用透视变换扫描得到答题卡边界具体步骤如下:
- 找到原始图像的4个顶点和目标图像的4个顶点
- 根据8个顶点构造原始图像到目标图像的变换矩阵
- 依据变换矩阵,实现原始图像到目标图像的变换,完成倾斜矫正
注意:用于构造变换矩阵使用的原始图像的4个顶点和目标图像的4个顶点的位置必须是匹配的,也就是说,要将左上、右上、左下、右下4个顶点按照相同的顺序排列。
OK,下面我们直接根据代码来进行说明。
import cv2
import math
import numpy as np
# x坐标
def sortBy_x(pt):
return pt[0]
# y坐标
def sortBy_y(pt):
return pt[1]
def correct(path):
try:
answerSheet = cv2.imread(path)
gray = cv2.cvtColor(answerSheet, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
canny = cv2.Canny(blurred, 75, 200)
contours, Hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 1:
result_contour = contours[0]
else:
max_length = -1
index = -1
for i, contour in enumerate(contours):
length = cv2.arcLength(contour, True)
if length > max_length:
max_length = length