前言
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(logN),搜索的效率取决于搜索过程中元素的比价次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到想要搜索的元素。
一、概念
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
- 插入元素:
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此为止进行存放
- 搜索元素:
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方法即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者散列表)
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity;capacity为存储元素底层空间总的大小
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
二、哈希冲突
对于两个数据元素的关键字_i和_j(i != j),但有Hash(_i) = Hash(_j),即:不同关键字通过相同哈希函数计算出相同的哈希地址,该现象称为哈希冲突或哈希碰撞。
把具有不同关键码二具有相同哈希地址的数据元素称为“同义词”
三、哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计的不够合理
哈希函数设计原则
- 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
- 哈希函数计算出来的地址能均匀分布在整个空间中
- 哈希函数应该比较简单
常见哈希函数
- 直接定址法
取关键字的某个线性函数为散列地址:Hash(key) = A * key + B
优点:简单、均匀
缺点:需要事先知道关键字的分