初识人工智能之Tensorflow

本文介绍了人工智能的基础——Tensorflow,通过SoftMax Regression实例讲解神经网络识别手写数字。内容涵盖神经网络的基本原理、生物神经网络模型、算法、特点,以及卷积神经网络的结构和作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow实现SoftMaxRegression识别手写数

 写在前面的话:

        大家好,我是九娘。早就在江湖上听闻了人工智能,更有广大网友传闻“你有高学历吗”,“没有硕士以上还是不要了”。

30545a6066af4448a44d2b22baf91955.png

       由于大部分网友都提及了人工智能需高学历方可着手,那我一个本科生不服气了,非得去探探它到底是些什么玩意儿。咱们从最基本的神经网络开始吧!

 

下面👇 上才艺:

 神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化。

(文字太过于僵化,咱们以图片为例)

5c19b0b93b2a4873af68741d93e4f0dc.jpg

 a18e14b5579b4e8e978d4ce098a2c415.jpg

 


神经网络介绍:

  • 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
  • 人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

内容介绍:

  • 生物原型。从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
  • 建立模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
  • 算法。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莎萌玩家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值