Codeforces Educational Codeforces Round 164 E. Chain Reaction 【思维、分块、调和级数复杂度】

文章讲述了在一个怪物排列中,通过闪电技能攻击并传播伤害,计算最小攻击次数以击败所有怪物的算法。首先分析了k=1的情况,然后扩展到k>1,提出数论分块和利用调和级数的方法优化求解,时间复杂度分别为O(n√A)和O(n+AlogA)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Chain Reaction

E

题意

nnn 个怪物排成一行,第 iii 个怪物的生命值为 aia_iai
当一只怪物的生命值为正数时,它才被认为是活着

假设你的闪电技能每次能够造成 kkk 点伤害,你每次可以选择一个怪物攻击,这只怪物会先受到 kkk 点伤害,并且闪电会向两边传递,直到遇到一只已经死亡的怪物,或者左右端点

现在对于 ∀k∈[1,max(a1,a2,...,an)]\forall k \in [1, max(a_1,a_2,...,a_n)]k[1,max(a1,a2,...,an)],输出击败所有怪物的最小攻击次数

思路

我们先从 k=1k = 1k=1 的特例入手,第一次攻击会传播至所有的怪物,我们一直攻击,直到有一只怪物死亡,那么从此刻开始,所有的怪物会被分成若干个互相隔离的子问题,因为闪电无法在不同的隔离快间传递了!
我们继续在其中一个块中操作,继续攻击直到又一只怪物死亡,这个块又被分割成子问题

那么我们可以得出结论:本题不存在最小攻击次数一说,不管如何选择操作对象,最终所需要的总攻击数都是一样

那么我们可以从 111 号怪物开始攻击,直到它死亡,需要 a1a_1a1 次攻击(k=1k =1k=1),那么我们继续移动到 222 号怪物,此时有两种情况:

  1. a2≤a1a_2 \leq a_1a2a1,由于闪电的传递222 号怪物早已死亡,无需操作
  2. a2>a1a_2 > a_1a2>a1,需要额外操作 a2−a1a_2 - a_1a2a1 次,补上伤害

后续也是类似情况,就像爬山峰一样,上山过程中才会贡献答案,下山过程不贡献答案

答案即为:a1+∑i=2nmax(0,ai−ai−1)a_1 + \sum_{i = 2}^{n}max(0, a_i - a_{i - 1})a1+i=2nmax(0,aiai1)

以上是 k=1k = 1k=1 的分析,我们在 O(n)O(n)O(n) 下求出了答案

对于其他的 k≥2k \geq 2k2,我们不妨将每个怪物的生命值改为:⌈aik⌉\lceil \dfrac{a_i}{k} \rceilkai

也就是这个怪物需要上取整次攻击,答案变为:⌈a1k⌉+∑i=2nmax(0,⌈aik⌉−⌈ai−1k⌉)\lceil \frac{a_1}{k} \rceil + \sum_{i = 2}^{n}max(0,\lceil \frac{a_i}{k} \rceil - \lceil \frac{a_{i-1}}{k} \rceil)ka1+i=2nmax(0,kaikai1⌉)

我们提前将 aia_iai系数存储起来,当 i=1或ai>ai−1i = 1 或 a_i > a_{i-1}i=1ai>ai1 时,aia_iai 的系数 +1+1+1;当 ai<ai+1a_i < a_{i + 1}ai<ai+1 时,aia_iai 的系数 −1-11

最后我们只需要将每个 aia_iai 对应的系数乘上 ⌈aik⌉\lceil \frac{a_i}{k} \rceilkai 累加,就是答案

暴力扫描求解复杂度是:O(kn)O(kn)O(kn),显然不行,考虑优化:

有两种优化方法,一种是:数论分块,一种是利用调和级数复杂度

  1. 数论分块做法,时间复杂度:O(nA)O(n\sqrt A)O(nA)
    注意到对于当前的 kkk⌈aik⌉\lceil \frac{a_i}{k} \rceilkai 的取值只有 O(A)O(\sqrt A)O(A) 种(AAAaia_iai 最大值),这是因为:考虑 ∀i≤A,Ai≥i\forall i \leq \sqrt A,\frac{A}{i} \geq iiAiAi,也就是大概 2A2\sqrt A2A 种取值,我们采用数论分块的做法即可
    具体就是,以 ansians_iansi 表示 k=ik=ik=i 的答案,那么对于每个 aia_iai,将它对 ⌈aik⌉\lceil \frac{a_i}{k} \rceilkai 的取值分割成 O(ai)O(\sqrt a_i)O(ai) 块,利用差分来区间统计块内的贡献
#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int n;
    std::cin >> n;
    std::vector<int> a(n + 1, 0);
    fore(i, 1, n + 1) std::cin >> a[i];
    int mx = *max_element(ALL(a));
    std::vector<ll> ans(mx + 5, 0);
    fore(i, 1, n + 1){
        int coef = 0; //coef表示正负
        if(a[i] > a[i - 1]) ++coef;
        if(i + 1 <= n && a[i] < a[i + 1]) --coef;
        int r = a[i];
        ans[r + 1] += coef; //k大于ai的通通上取整取值为1
        while(r > 0){
            ll val = (a[i] + r - 1) / r; //val 表示ai对每个k上取整的系数
            int l = (a[i] + val - 1) / val; //l,r左右边界
            ans[l] += val * coef;
            ans[r + 1] -= val * coef;
            r = l - 1; //下一块
        }
    }

    fore(i, 1, mx + 1){
        ans[i] += ans[i - 1];
        std::cout << ans[i] << ' ';
    }
    return 0;
}

  1. 调和级数复杂度做法,时间复杂度:O(n+Alog⁡A)O(n + A\log A)O(n+AlogA)
    还是同样的,我们先统计每个 aia_iai 的系数,

注意到:对于当前的 kkk,当 ai∈[1,k]a_i \in [1, k]ai[1,k] 时,⌈aik⌉=1\lceil \frac{a_i}{k} \rceil = 1kai=1
ai∈[k+1,2k]a_i \in [k + 1, 2k]ai[k+1,2k] 时,⌈aik⌉=2\lceil \frac{a_i}{k} \rceil = 2kai=2
ai∈[2k+1,3k]a_i \in [2k + 1, 3k]ai[2k+1,3k] 时,⌈aik⌉=3\lceil \frac{a_i}{k} \rceil = 3kai=3

那么我们可以将每个 aia_iai 对当前的 kkk 的贡献按照 ⌈aik⌉\lceil \frac{a_i}{k} \rceilkai,分成 kkk 块,

那么对于每个 kkk,我们要计算:O(A1+A2+A3+...+AA)=O(A⋅(11+12+...+1A))=O(Alog⁡A)O(\frac{A}{1} + \frac{A}{2} + \frac{A}{3} + ... + \frac{A}{A}) = O(A \cdot (\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{A})) = O(A \log A)O(1A+2A+3A+...+AA)=O(A(11+21+...+A1))=O(AlogA)

只需要用前缀和数组预存一下每个 aia_iai 的系数,即可快速区间查询

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int n;
    std::cin >> n;
    std::vector<int> a(n + 1, 0);
    fore(i, 1, n + 1) std::cin >> a[i];
    int mx = *max_element(ALL(a));
    std::vector<ll> sum(mx + 5, 0); //前缀和
    fore(i, 1, n + 1){
        int coef = 0; //coef表示正负
        if(a[i] > a[i - 1]) ++coef;
        if(i + 1 <= n && a[i] < a[i + 1]) --coef;
        sum[a[i]] += coef;
    }
    
    fore(i, 2, mx + 1)	sum[i] += sum[i - 1];
    
    fore(k, 1, mx + 1){
    	ll ans = 0;
    	for(int l = 1; l <= mx; l += k){
    		int r = std::min(mx, l + k - 1);
    		ans += (l + k - 1) / k * (sum[r] - sum[l - 1]);
    	}
    	std::cout << ans << ' ';
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值