【备战秋招】每日一题:2023.08.12-美团机试-第四题-字符串变换

博客围绕小美将长度为n的字符串平铺成矩阵,求矩阵最小权值的问题展开。介绍了输入输出要求及样例,提出枚举因子确定矩阵行数和列数,最多进行64次BFS求连通块的思路,时间复杂度为O(64n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目内容

小美拿到了一个长度为nnn的字符串,她希望将字符串从左到右平铺成一个矩阵(先平铺第一行,然后是第二行,以此类推,矩阵有xxxyyy列,必须保证x∗y=nx * y =nxy=n,即每yyy个字符换行,共xxx行)。

该矩阵的权值定义为这个矩阵的连通块数量。小美希望最终矩阵的权值尽可能小,你能帮小美求出这个最小权值吗?

注: 我们定义,上下左右四个方向相邻的相同字符是连通的。

输入描述

第一行输入一个正整数nnn,代表字符串的长度。

第二行输入一个长度为nnn的、仅由小写字母组成的字符串。

1≤n≤1041 \leq n \leq 10^41n104

输出描述

输出一个整数表示最小权值。

样例

输入输出示例仅供调试,后台判题数据一般不包含示例

输入

9
aababbabb

输出

2

说明

平铺为3∗33*333的矩阵:

aabaabaab

abbabbabb

abbabbabb

共有222个连通块,444aaa555bbb

思路:枚举+bfs

首先看这个数据范围,可以知道的是一个数的因子数不会太大。暴力枚举可以发现,10000以内因子数最大的数是 924092409240 ,共有 646464 个因子。

646464 一般就是 log⁡n\log nlogn 的最大值。

所以可以枚举因子来确定矩阵的行数和列数。

这样最多 646464BFSBFSBFS 求连通块即可。

时间复杂度:O(64n)O(64n)O(64n)

import java.util.*;

public class Main {
    static class Pair {
        int first, second;
        
        Pair(int first, int second) {
            this.first = first;
            this.second = second;
        }
    }
    
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int len = scanner.nextInt();
        String s = scanner.next();
        
        int[] vis = new int[len];
        int[] dx = {-1, 0, 1, 0};
        int[] dy = {0, 1, 0, -1};
        
        int mid = len / 2;
        int ans = 0x3f3f3f3f;
        
        for (int i = 1; i <= mid; ++i) {
            if (len % i == 0) {
                ans = Math.min(ans, get(i, len / i, s, vis, dx, dy));
            }
        }
        
        System.out.println(ans);
    }
    
    static int get(int n, int m, String s, int[] vis, int[] dx, int[] dy) {
        Queue<Pair> q = new LinkedList<>();
        int res = 0;
        Arrays.fill(vis, 0);
        
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                if (vis[i * m + j] != 0) {
                    continue;
                }
                
                char ch = s.charAt(i * m + j);
                q.add(new Pair(i, j));
                
                while (!q.isEmpty()) {
                    Pair top = q.poll();
                    
                    for (int k = 0; k < 4; ++k) {
                        int nx = top.first + dx[k];
                        int ny = top.second + dy[k];
                        
                        if (nx >= 0 && nx < n && ny >= 0 && ny < m && vis[nx * m + ny] == 0 && s.charAt(nx * m + ny) == ch) {
                            vis[nx * m + ny] = 1;
                            q.add(new Pair(nx, ny));
                        }
                    }
                }
                res += 1;
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

塔子哥学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值