【涂色 —— 区间dp】

题目

b9792c80373b41ae85c04ab468d2b341.png

9a936944c56c44889f0bdd41aecfb18a.png

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 5010;
int a[N], f[N][N];

int main()
{
    int n;
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        cin >> a[i];
        if(a[i] == a[i-1])
        {
            i--;
            n--;
        }
    }
    for(int len = 2; len <= n; len++)
    {
        for(int i = 1; i + len - 1 <= n; i++)
        {
            int j = i + len - 1;
            
            f[i][j] = min(f[i+1][j], f[i][j-1]) + 1;
            if(a[i] == a[j]) f[i][j] = f[i+1][j-1] + 1;
        }
    }
    
    cout << f[1][n];
    return 0;
}

思路

预处理

将颜色相同且相邻的元素合并,更新n值

状态定义

eq?f%5Bi%5D%5Bj%5D 表示从第 i 个元素到第 j 个元素涂成相同颜色的方法集合

eq?f%5Bi%5D%5Bj%5D 的值等于集合中方案的的最小值

目标状态

eq?f%5B1%5D%5Bn%5D

状态转移

首先明确扩展的过程中,联通块自然是连续的一段,而最后一步就是我们转移的讨论点、子集的划分点

eq?1.%20%5C%3B%20when%20%5C%3B%20a%5Bi%5D%20%5Cneq%20a%5Bj%5D

eq?f%5Bi%5D%5Bj%5D%20%3D%20min%28f%5Bi&plus;1%5D%5Bj%5D%2C%20%5C%3B%20f%5Bi%5D%5Bj-1%5D%29%20&plus;%201

若端点元素颜色不同,则联通块不论是另一个端点还是非端点元素的颜色,都与最后一个端点元素颜色不同,必然要耗费一次步骤

eq?2.%20%5C%3B%20when%20%5C%3B%20a%5Bi%5D%20%3D%20a%5Bj%5D

eq?f%5Bi%5D%5Bj%5D%20%3D%20f%5Bi&plus;1%5D%5Bj-1%5D%20&plus;%201

若端点元素颜色相同,则多出一种情况,就是最后一次将两个端点元素同时联通。

比较以下这三个方案的表达式可知,上面这个表达式就是考虑完全后最好的方案(第三个方案的子段是前两个子段的一部分)

eq?f%5Bi&plus;1%5D%5Bj%5D&plus;1%2C%20%5C%3B%20f%5Bi%5D%5Bj-1%5D&plus;1%20%2C%5C%3B%20f%5Bi&plus;1%5D%5Bj-1%5D%20&plus;%201

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值