c++模重复平方计算法&&中国剩余定理

一、模重复平方计算法

1.内容

2.思路

1)计算将x写出二进制的形式,2的最高次数

2).将x写出二进制,arr[i]保存ni,取值0/1

3)输出最小的非负解

3.代码

#include<iostream>
using namespace std;

int main()
{
	int k=0,x=0,m=0;//底数 指数 模 
	cin>>k>>x>>m;
	int n=0,i=1;
	while(i<x) //计算x的最高次数 
	{
		if(x/i<2) break;
		else 
		{
			i*=2;
			n++;
		}
	}
	int arr[n+1],a[n+1],b[n+1];	//ni(0/1) ai bi 
	int temp=x;
	for(int j=n;j>=0;j--)
	{
		if(temp/i>=1)
		{
			arr[j]=1;
			temp=temp%i;
		}
		else arr[j]=0;
		i/=2;
	}
	b[0]=k%m;
	if(arr[0]==1) a[0]=b[0];
	else a[0]=1;
	for(int j=1;j<=n;j++)
	{
		b[j]=(b[j-1]*b[j-1])%m;
		if(arr[j]==1)	a[j]=(a[j-1]*b[j])%m;
		else a[j]=a[j-1];
	}
	cout<<a[n];
}

二、中国剩余定理

1.内容

2.思路

1)先输入n,m[n],b[n],并将所有的mi相乘结果保存至M中

2)Mi=M/mi,求出Mi的逆元j,x+=Mi*j*b[i]

3)输出最小的非负解

3.代码

#include<iostream>
using namespace std;

int main()
{
	int n=0;
	cin>>n;
	int m[n],b[n];
	int M=1;	//将m[n]累乘 
	for(int i=0;i<n;i++)
	{
		cin>>m[i];
		M*=m[i];
	}
	for(int i=0;i<n;i++)
	{
		cin>>b[i];
	}
	int x=0; 
	int Mi=0;
	for(int i=0;i<n;i++)
	{
		Mi=M/m[i];
		for(int j=1;j<m[i];j++)	//得到Mi的逆元j 
		{
			if(Mi*j%m[i]==1)
			{
				x+=Mi*j*b[i];	//x等于Mi*j*b[i]的累加 
				break;
			}
		}
	}
	cout<<x%M; 
 } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值