YOLO滑坡数据集(山坡、边坡、护坡)6600+张图像,含训练结果与模型

今天,我们为大家分享一个高质量的滑坡数据集,专注于山坡、边坡和护坡等不同地形的滑坡缺陷检测。这些图像经过精心筛选,完全免费开放给大家使用,为你的YOLO模型训练提供优质的数据支持。

在这篇文章中,我们不仅提供了包含6600+张图片的完整数据集,还分享了数据集的测试结果、训练模型和评估指标,帮助你在实际应用中更好地验证和优化滑坡检测模型。

下载链接:YOLO滑坡数据集(山坡、边坡、护坡) 6600+张图像 含训练结果与模型


数据集简介

该数据集能适应 山坡、边坡和护坡 这三类地形的滑坡缺陷,共计 6600+ 张图像,涵盖了不同天气、不同光照条件下的滑坡特征。图像已进行高效标注,适用于深度学习算法的训练和测试,尤其适合使用 YOLOv8 等目标检测模型。


边坡滑坡检测的测试

为了验证该数据集在滑坡检测中的应用效果,我进行了以下测试:

输入数据

本次测试使用了 797张 包含滑坡相关缺陷的原始图像。这些图像包括了各种类型的滑坡(如土石滑坡、岩石滑坡等),适用于训练 YOLOv8 等目标检测模型。如图

QQ_1734503769818

数据增强

为提高模型的鲁棒性,所有图像经过了以下数据增强处理:

  • 水平翻转
  • 对比度调整
  • 旋转
  • 高斯噪声添加
  • 色调、饱和度、亮度调整
  • 弹性变换
  • 随机缩放
实际输出
  • 检测框位置:模型准确识别了图像中的滑坡区域,并在多个区域绘制检测框,覆盖了大部分明显的滑坡位置。
  • 输出类别:滑坡
  • 置信度:整体置信度平均值为 0.9,表示模型对滑坡区域的识别具有较高的可靠性。
评估指标
  • F1分数:接近 1.00,表明模型在滑坡检测中的表现非常优秀,精确度和召回率几乎完美。
  • 精度(Precision):精度约为 0.95,说明模型能有效识别出真实的滑坡缺陷,误报率较低。
图表

滑坡F1分数曲线

F1_curve

滑坡精度曲线

P_curve

结论

在本次测试中,模型表现优异,能高效准确地识别滑坡缺陷,识别率和准确率均达到较高水平。该数据集为滑坡检测领域的进一步研究和应用提供了有力支持。更多资料加群领取

### 适用于东南地区滑坡检测YOLO数据集 在选择适用于东南地区滑坡检测YOLO数据集时,需要考虑数据集是否包东南地区的地理特征、气候条件以及地形特点。根据提供的引用内容,以下是几个可能适合的数据集及其特点: 1. **YOLO滑坡数据集** YOLO滑坡数据集山坡边坡护坡三类地形的滑坡缺陷图像,总计超过6600[^2]。该数据集涵盖了不同天气和光照条件下的滑坡特征,并已进行高效标注,适用于深度学习算法训练和测试。由于其广泛的地形覆盖范围和标注质量,此数据集可能是适用于东南地区滑坡检测的良好选择。 2. **公路落石滑坡坍塌倒树检测数据集** 公路落石滑坡坍塌倒树检测数据集提供了1485图像,涵盖四个类别:落石(`daolutanta`)、倒树(`daoshu`)、滑坡(`huapo`)和石头(`shitou`)[^3]。虽然该数据集的规模较小,但其标注格式支持Pascal VOC和YOLO格式,便于直接用于YOLO模型训练。此外,该数据集可能包东南地区相关的公路滑坡场景。 #### 数据集下载 目前没有明确的公开链接指向这些数据集的下载地址。如果需要获取这些数据集,可以尝试以下方法: - 访问相关研究机构或大学的官方网站,查找是否有开放的数据集资源。 - 在公开数据集平台(如Kaggle、CVAT、MMDetection等)搜索“landslide”或“slope detection”等相关关键词。 - 如果上述方法无法找到所需数据集,可以联系数据集的作者或维护者,询问是否提供下载权限。 #### 示例代码:加载YOLO格式数据集 以下是一个简单的Python代码示例,展示如何加载YOLO格式的数据集并进行可视化: ```python import cv2 import numpy as np def load_yolo_dataset(image_path, label_path): image = cv2.imread(image_path) with open(label_path, 'r') as f: labels = f.readlines() bboxes = [] for label in labels: class_id, x_center, y_center, width, height = map(float, label.strip().split()) x_min = int((x_center - width / 2) * image.shape[1]) y_min = int((y_center - height / 2) * image.shape[0]) x_max = int((x_center + width / 2) * image.shape[1]) y_max = int((y_center + height / 2) * image.shape[0]) bboxes.append([x_min, y_min, x_max, y_max, int(class_id)]) return image, bboxes def visualize_bboxes(image, bboxes): for bbox in bboxes: x_min, y_min, x_max, y_max, class_id = bbox cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) cv2.imshow("Image with Bounding Boxes", image) cv2.waitKey(0) # 示例路径 image_path = "example.jpg" label_path = "example.txt" image, bboxes = load_yolo_dataset(image_path, label_path) visualize_bboxes(image, bboxes) ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值