快速上手yolov8项目

§ 简介

YOLOv8是由Ultralytics公司开发的最新一代目标检测模型,它是YOLO(You Only Look Once)系列的延续,旨在提供实时、高精度的目标检测能力。YOLOv8在保持高速度的同时,也注重精度的提升,适用于各种物体检测任务。
在这里插入图片描述

YOLOv8系列提供多种模型,每种模型都专门用于计算机视觉中的特定任务,如物体检测、实例分割、姿态/关键点检测、定向物体检测和分类等。
在这里插入图片描述
yolov5和yolov8为同一作者,yolov5在yolov8上作了集成,可以在yolov8上运行yolov5模型。

§ 简单上手

YOLOv8 环境安装参考教程:【手把手带你实战YOLOv8-入门篇】YOLOv8 环境安装

pip源码安装:

cmd激活yolov8环境,cd到存放代码的文件夹,然后输入命令:

pip install -e .

查看虚拟环境中安装的包

pip list

在这里插入图片描述
使用:

yolo predict model=yolov8n.pt source=ultralytics/assets/bus.jpg

在这里插入图片描述

命令解释:

yolo task=detect model=predict model=./yolov8n.pt source="./ultralytics/assets/bus.jpg"
  • yolo:启动命令
  • task=detect:指定了要执行的任务类型,这里是 detect,意味着进行目标检测。
  • model=predict:模型的作用,预测、训练、验证……
  • model=./yolov8n.pt:使用什么模型
  • source=“./ultralytics/assets/bus.jpg”:指定输入图像的路径,指向 ultralytics/assets/bus.jpg 文件。

§ 数据集构建

数据准备

图片类型数据:无需额外处理,直接可以进行标注
视频类型数据:进行抽帧处理,导出为图片

抽帧处理

import cv2
import matplotlib.pyplot as plt

video = cv2.VideoCapture('1.avi')
num = 0
step = 44 # 间隔帧数
while True:
    ret, frame = video.read()
    if not ret:
        break
    num += 1
    if num % step == 0:
        cv2.imwrite("./1/" + "" + str(num) + ".jpg", frame)

在这里插入图片描述

1、./是当前目录(可省略)
2、…/是父级目录
3、/是根目录

pip install labelimg

打开labelimg进行标注

快捷键:
w:标框
a:上一张图片
d:下一张图片

标图网站

makesense

在线标注,加载预训练模型辅助标注

参考教程
在这里插入图片描述

寻找公开数据集

roboflow 公开数据集
地址:
https://public.roboflow.com/object-detection
https://universe.roboflow.com/

§ 模型训练

训练前准备

数据集准备:

images:存放图片

  • trgin:训练集图片
  • val:验证集图片

labels:存放标签

  • train:训练集标签文件,要与训练集图片名称-一对应
  • val:验证集标签文件,要与验证集图片名称–对应

在这里插入图片描述
配置yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco8  ← downloads here (1 MB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kaixin_啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值