第四章 数字特征

专题一        期望与方差

1.期望的定义

(1)离散型随机变量$X$的概率分布为P\left \{ X=x_i \right \}=p_i,i=1,2,\cdots,

则期望定义为$EX=\sum_{i}x_{i}p_{i}$。(取值乘概率再求和

对于$Y=g(X)$,其期望为$EY=\sum_{i}g(x_{i})p_{i}$

★(2)连续型随机变量$X$的概率密度为f(x),期望定义为$EX=\int_{-\infty}^{+\infty}xf(x)dx$

(求X函数的期望,将X改成x,函数照抄,乘X的概率密度,再积分)

对于$Y=g(X)$,其期望为$EY=\int_{-\infty}^{+\infty}g(x)f(x)dx$

(3)二维离散型随机变量$(X,Y)$的联合概率分布为

P\left \{ X=x_i,Y=y_i \right \}=p_{ij},i,j=1,2,\cdots,

函数$Z=g(X,Y)$的期望为$EZ=\sum_{i} \sum_{j} g(x_{i},y_{j})p_{ij}$。先求z的概率分布

(4)二维连续型随机变量$(X,Y)$的联合概率密度为f(x,y),函数$Z=g(X,Y)$的期望为$EZ=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy$

(求(X,Y)的函数的期望,将X,Y改写为x,y,函数照抄,乘联合概率密度作二重积分)

特别地,$EX=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xf(x,y)dxdy$$EY=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)dxdy$

2.期望的性质

线性性质:$E(aX + bY + c)=aEX + bEY + c$。线性组合,线性函数

乘法性质:$E(XY)=EX\cdot EY\Leftrightarrow $$X$$Y$不相关。

        不相关 -> 不是独立 -> 范围更大,没有任何关系,不在直线上有可能在圆上

        若$X$$Y$独立,则$E(XY)=EX\cdot EY$

3.方差的定义

DX = E(X - EX)^{2}=EX^{2}-(EX)^{2}\Leftrightarrow EX^2=DX+(EX)^2

平方的期望-期望的平方

4.方差的性质

(1)线性变换方差:$D(aX + c)=a^{2}DX$

(2)和差方差:$D(X\pm Y)=DX + DY\pm 2Cov(X,Y)$

        推论$D(X\pm Y)=DX + DY\Leftrightarrow $$X$$Y$不相关。

        特别地,若$X$$Y$相互独立,则$D(X\pm Y)=DX + DY$

(3)乘积方差:若$X$$Y$相互独立,$D(XY)=DX\cdot DY+(EX)^{2}DY+(EY)^{2}DX$

5.八大分布的期望与方差

分布记号期望方差
0-1分布$B(1,p)$$p$$p(1 - p)$
二项分布$B(n,p)$$np$$np(1 - p)$
泊松分布$P(\lambda)$$\lambda$$\lambda$
几何分布$G(p)$$\frac{1}{p}$$\frac{1 - p}{p^{2}}$
超几何分布$H(N,M,n)$$\frac{nM}{N}$$\frac{nM}{N}(1 - \frac{M}{N})(\frac{N - n}{N - 1})$
均匀分布$U(a,b)$$\frac{a + b}{2}$$\frac{(b - a)^{2}}{12}$
指数分布$E(\lambda)$$\frac{1}{\lambda}$$\frac{1}{\lambda^{2}}$
正态分布$N(\mu,\sigma^{2})$$\mu$$\sigma^{2}$

专题二        协方差与相关系数

1.协方差的定义

$Cov(X,Y)=E[(X - EX)(Y - EY)]=E(XY)-EX\cdot EY$

2.协方差的性质

(1)对称性:$Cov(X,Y)=Cov(Y,X)$$Cov(X,X)=DX$

(2)双线性:$Cov(aX + bY + c,Z)=aCov(X,Z)+bCov(Y,Z)$

3.相关系数的定义

$\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}=\frac{E(XY)-EX\cdot EY}{\sqrt{DX}\sqrt{DY}}$

4.相关系数的性质

(1)$|\rho_{XY}|\leq1$

(2)$\rho_{XY}=0\Leftrightarrow Cov(X,Y)=0\Leftrightarrow E(XY)=EX\cdot EY \Leftrightarrow D(X\pm Y)=DX+DY$

        不相关(不共线)

(3)\rho_{XY}=1\Leftrightarrow P \left \{ Y = aX + b \right \}=1(a>0);                        

        \rho_{XY}=-1\Leftrightarrow P\{Y = aX + b\}=1(a<0)

5.矩的定义

X为随机变量

$k$阶原点矩:$EX^{k}$

$k$阶中心矩:$E(X - EX)^{k}$。平均

XY为随机变量

k+l阶混合原点矩:$E(X^{k}Y^{l})$

k+l阶混合中心矩:$E\left[(X - EX)^{k}(Y - EY)^{l}\right]$

【评注】显然期望为一阶原点矩,方差为二阶中心矩,协方差为1+1阶混合中心矩

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值