第七章 参数估计

专题一 矩估计与最大似然估计

估计量的定义

构造统计量$\hat{\theta}(X_{1},X_{2},\cdots,X_{n})$ 估计总体分布中的未知参数 $\theta$,称 $\hat{\theta}(X_{1},X_{2},\cdots,X_{n})$$\theta$ 的估计量,$\hat{\theta}(x_{1},x_{2},\cdots,x_{n})$$\theta$ 的估计值。

矩估计

$EX^{k}=\frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k}$$E(X - EX)^{k}=\frac{1}{n}\sum_{i = 1}^{n}(X_{i}-\overline{X})^{k},k = 1,2,\cdots$,得 $\theta_{1},\theta_{2},\cdots$ 的矩估计量。

大数定律:

        一个参数:

                令EX=\overline X,前面含有\theta后面照抄,得\theta的矩估计量\hat{\theta }

        两个参数:

                令\left\{\begin{matrix} EX=\overline X\\ EX^2=\frac{1}{2}\sum_{i=1}^{n}x_i^2 \end{matrix}\right.,得\theta _1,\theta _2的矩估计量\hat{\theta }_1,\hat{\theta }_2

最大似然估计

定义:使得似然函数取得最大值的\theta

(1)对样本值$x_{1},x_{2},\cdots,x_{n}$,似然函数为:
L(\theta) = \begin{cases} \prod_{i=1}^{n} p(x_{i};\theta) \\ \prod_{i=1}^{n} f(x_{i};\theta) \end{cases},离散总体和连续总体

(2)似然函数两端取对数求导数;
(3)令 $\frac{d\ln L(\theta)}{d\theta}=0$,得 $\theta$的最大似然估计量。

(2)(3)条L(\theta )关于\theta单调递增(单调递减),\theta取右(左)端点

专题二 估计量的评价标准

估计量的评价标准

(1)无偏性:设 $\hat{\theta}$$\theta$估计量,若 $E\hat{\theta}=\theta$,则称 $\hat{\theta}$$\theta$ 的无偏估计量;
(2)有效性:设 $\hat{\theta}_{1},\hat{\theta}_{2}$$\theta$无偏估计量,若 $D(\hat{\theta}_{1})<D(\hat{\theta}_{2})$,则称 $\hat{\theta}_{1}$$\hat{\theta}_{2}$ 有效;
(3)一致性:设 $\hat{\theta}$$\theta$的估计量,若$\hat{\theta}$ 依概率收敛于$\theta$,则称$\hat{\theta}$$\theta$的一致(相合)估计量。

\frac{1}{n}\sum X_i\overset{P}{\rightarrow}EX_i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值