专题一 矩估计与最大似然估计
估计量的定义
构造统计量 估计总体分布中的未知参数
,称
为
的估计量,
为
的估计值。
矩估计
令 或
,得
的矩估计量。
大数定律:
一个参数:
令,前面含有
后面照抄,得
的矩估计量
两个参数:
令,得
的矩估计量
最大似然估计
定义:使得似然函数取得最大值的
(1)对样本值,似然函数为:
,离散总体和连续总体
(2)似然函数两端取对数求导数;
(3)令 ,得
的最大似然估计量。
(2)(3)条关于
单调递增(单调递减),
取右(左)端点
专题二 估计量的评价标准
估计量的评价标准
(1)无偏性:设 为
的估计量,若
,则称
为
的无偏估计量;
(2)有效性:设 为
的无偏估计量,若
,则称
比
有效;
(3)一致性:设 为
的估计量,若
依概率收敛于
,则称
为
的一致(相合)估计量。