概率论
文章平均质量分 72
概率论
C++、Java和Python的菜鸟
知识内容为各考研书电子版,博客非盈利所发,账号仅个人学习用
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第七章 参数估计
(2)似然函数两端取对数求导数;定义:使得似然函数取得最大值的。专题一 矩估计与最大似然估计。专题一 矩估计与最大似然估计。估计总体分布中的未知参数。专题二 估计量的评价标准。单调递增(单调递减),的一致(相合)估计量。,离散总体和连续总体。原创 2025-08-16 15:10:09 · 294 阅读 · 0 评论 -
第六章 统计初步
的简单随机样本,且两个样本相互独立,样本均值分别为。相互独立的标准正态分布 比 根号下。的简单随机样本,样本均值为。样本均值与样本方差的性质。专题二 三大抽样分布。原创 2025-08-16 14:49:50 · 280 阅读 · 0 评论 -
第五章 大数定律与极限定理
狄莫弗 - 拉普拉斯(Demoivre—Laplace)中心极限定理。列维 - 林德伯格(Levy—Lindeberg)中心极限定理。专题一 切比雪夫不等式。专题一 切比雪夫不等式。伯努利(Bernoulli)大数定律。辛钦(Khinchine)大数定律。专题三 中心极限定理。随机变量 偏离 其均值 的上界。专题二 大数定律。切比雪夫大数定律(大量数据)数轴上以a为中心,以。原创 2025-08-16 13:43:01 · 244 阅读 · 0 评论 -
第四章 数字特征
不相关 -> 不是独立 -> 范围更大,没有任何关系,不在直线上有可能在圆上。(求(X,Y)的函数的期望,将X,Y改写为x,y,函数照抄,乘联合概率密度作二重积分)(求X函数的期望,将X改成x,函数照抄,乘X的概率密度,再积分)【评注】显然期望为一阶原点矩,方差为二阶中心矩,协方差为。专题二 协方差与相关系数。专题一 期望与方差。专题一 期望与方差。5.八大分布的期望与方差。平方的期望-期望的平方。原创 2025-08-16 12:39:46 · 769 阅读 · 0 评论 -
第三章 二维随机变量及其分布
设$X = X(\omega)$,$Y = Y(\omega)$为样本空间$\Omega$上的两个随机变量,称$(X,Y)$为二维随机变量。设$(X,Y)$为二维随机变量,对任意实数$x,y$,称$F(x, y) = P{X \leq x,Y \leq y}$为$(X,Y)$的联合分布函数,简称分布函数。设二维随机变量$(X,Y)$的联合分布函数为$F(x, y)$,分别称为$(X,Y)$关于$X$和$Y$的边缘分布函数。2.联合分布函数的定义3.联合分布函数的性质4.边缘分布函数的定义。原创 2025-08-15 18:52:53 · 528 阅读 · 0 评论 -
第二章 一维随机变量及其分布
设试验的样本空间为$\Omega$,称实值函数$X = X(\omega),\omega\in\Omega$为随机变量,简记作$X$。设$X$为随机变量,对任意实数$x$,称$F(x)=P{X\leq x}$为$X$的分布函数。原创 2025-08-15 12:23:19 · 763 阅读 · 0 评论 -
第一章 随机事件与概率
其中 $|A|$ 为事件 $A$ 的样本点数,$|\Omega|$ 为样本空间的总样本点数。递推关系:$C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$(6)差:事件A发生但事件B不发生,称为A与B的差,记作A-B。全排列($m = n$)的种数为 $n!注:一次试验只有一个样本点发生,若A中的样本点发生则称A发生。组合性质:对称性:$C_n^m = C_n^{n-m}$不包含任何样本点,每次试验都不发生,称为不可能事件。(5)对立:若事件A与B不能同时发生,但。例如:抛骰子,样本点。原创 2025-08-14 17:14:14 · 512 阅读 · 0 评论
分享