
机器学习模型
文章平均质量分 87
Kkkika
认真做事
所有文章免费公开,如果我的文章“被vip”了,可以评论或私信我重置公开。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【编码】【特征选择】【降维】
编码(Encoding)编码是将原始数据转换为模型能够理解和处理的格式的过程。常见的编码方法包括:标签编码(Label Encoding):适用于类别较少的分类数据。将每个类别映射到一个唯一的整数。独热编码(One-Hot Encoding):适用于类别较多的分类数据。将每个类别转换为一个二进制向量,其中一个位置为1,其余位置为0。目标编码(Target Encoding):适用于分类特征,将类别映射到目标变量的平均值(或其他统计量)。可以处理类别不平衡的问题,但需要防止过拟合。文本原创 2024-11-10 23:36:37 · 547 阅读 · 0 评论 -
【LGBM】LightGBM sklearn API超参数解释与使用方法(优化)
LGBMModel:基础模型类,通常不直接使用。:用于分类任务,支持二分类和多分类。:用于回归任务,预测连续值目标变量。LGBMRanker:用于排序任务,适用于信息检索和推荐系统。原创 2024-11-08 08:47:24 · 2975 阅读 · 0 评论