一、编码、调制概念
1、回顾基础
前一章我们学了《通信基础》,里面讲了计算机网络里传输数据的形式是【信号】,信号又分为【数字信号】(离散的)、【模拟信号】(连续的)
那么学过计算机组成原理的都知道,
- 在计算机本部里的数据的形式底层都是【二进制数据】
- 然后在网络传输时,发送方(信源)的【二进制数据】要进入到计算机网络的 “信道”,数据就要变成【信号数据】
- 最后到达接收方(信宿)的时候,【信号数据】又要变回【二进制数据】
于是,在信源跟信道之间就有一个【变换器】,用来将二进制数边成信号数据;信道跟信宿之间也有一个【反变换器】,用来将信号数据变回二进制数。
2、“编码” 跟 “解码” 的概念
那么,“编码” 跟 “解码” 就是针对【二进制和数字信号】的转换:
二进制 ——> 数字信号:编码
数字信号 ——> 二进制:解码
对于用来 “编码”和“解码” 的 “交换器”和“反交换器”,我们也可以叫 “编码解码器”,常见的就是【有线网卡 (有线网络适配器)】
3、“调制” 跟 “解调” 的概念
那么,“调制” 跟 “解调” 就是针对【数字信号和模拟信号】的转换:
数字信号 ——> 模拟信号:调制
模拟信号 ——> 数字信号:解调
对于用来 “调制”跟“解调” 的 “交换器”和“反交换器”,我们也可以叫 “调制解调器”,常见的就是【光猫】(四级、考研的单词词汇里有:optical modem,当时我一直不知道modem调制解调器是啥玩意,每次都跳过不背)
二、常见编码形式
常见的编码形式有这几种:
- (NRZ)不归零编码(就是最普通最常见的:高低电频代表1、0的数字信号)
- (RZ)归零编码
- (NRZI)反向非归零编码
- 曼切斯特编码
- 差分曼切斯特编码
1、记忆各个编码形式
这几个编码的形式肯定要记住的,当时我记的时候也比较头疼,于是我总结一下记忆技巧:
1)首先分两大类:【中间变】和【中间不变】的
什么是中间变/不变?
拿第一个不归零编码来看,中间不变就是每个时间周期之间的信号没有明显的停顿间隔区别,比如我如果念第一个不归零编码信号就是:“高~~~低~高低高”,根本不知道每个时间周期的间隔,都不知道第一个“高”信号是传了1个还是4个,没有【节奏】
;
那么中间变就是创造一种【节奏】,就像敲鼓、弹吉他都要讲究一个节拍,我用归零编码打比方,念他的信号就是:“高(空拍)高(空拍)高(空拍)高(空拍)低(空拍)低(空拍)高(空拍)低(空拍)高(空拍)”,在这样的节奏下很明显能知道传来了具体几个信号
那么就可以记住,凡是一个时间周期中间不变的,就考虑是不是:【不归零编码(NRZ)】和【反向非归零编码(NRZI)】
中间变的:【归零编码(RZ)】、【曼切斯特编码】、【差分曼切斯特编码】
2)然后具体区分这两大类的各个类
对于中间不变的:
很简单,非归零编码一眼就看出根据高、低电压对应1、0数字的;
反向非归零编码则是“跳0不跳1”,只要跟上一个信号不一样了(不管高低电压)就是0,只要一样就是1。
对于中间变的:
归零编码的形状很好区分,因为它有明显的归零水平线,低电压0会明显低一点,高电压1就明显高一点
;
曼切斯特和差分曼切斯特形状比较像,就只能对应二进制数来比较了(考试里不会有下图那么明显的箭头的)
曼切斯特是“上跳0,下跳1”,这里上跳下跳分不清的话就从头描着,看每个时间周期中间是往上还是往下去(而且不用管高低电压)
差分曼切斯特是“变0,不变1”,注意是看每个时间周期前的电压根当前周期的电压一不一样,不是看中间(而且不用管高低电压)
不过王道考研里说,曼切斯特编码有两个科学家提出了两种观点,通常考试默认是 “上跳0,下跳1”,但是不排除也会 “上跳1,下跳0”,那么假如你发现也不符合归零编码、也不符合差分曼切斯特编码的时候,如果还不符合“上跳0,下跳1”,就可以试一下是不是符合“上跳1,下跳0”,是的话也算曼切斯特编码
2、各个编码的特点
这还要记一下各个编码的【自同步能力】和【抗干扰能力】
【自同步能力】:就是前面说了,有两大类编码 “中间变” 和 “中间不变”,中间变的编码会很明显的有一种“节奏”,来区分每一个时间周期;但是中间不变的就没有这种 “节奏”,信宿根本没办法对应时间周期知道信源发了几个信号,就要额外依托于一种【时钟信号】来分隔每个时间周期
;
所以中间不会变的那两种编码很明显就没有【自同步能力】;中间会变的都具有【自同步能力】,只不过“反向非归零编码”没一个时间周期还需要增加一个冗余位,用于实现自同步,需要留意一下
【浪费带宽】:就是能看出中间会变的编码,每一个之间周期只用1Hz的带宽;而中间会变的需要消耗2Hz,就会浪费带宽
【抗干扰能力】:就记住“曼切斯特” 和 “差分曼切斯特” 抗干扰强就行了
最后注意:传统以太网使用的是“曼彻斯特编码”;“差分曼彻斯特” 比 “曼彻斯特编码”变化少,更适合速率高的传播
例题:
注意:凡是xBasex这样的都是以太网,只有以太网规定了这些传输介质的信息描述,而以太网用的只能是【曼彻斯特编码】
三、常见调制方式
模拟信号在变成模拟信号之前,是先需要信源的【数字信号】进行 “调制” 之后才会变成【模拟信号】的,我们也成模拟信号之前的这个信号叫【基带信号】
为什么不直接用数字信号?因为有的信道的材质不支持离散的数字信号,比如外太空的真空环境的信道,只能依靠电磁波传输信号,那就要用模拟信号
1、基础调制
常见的模拟信号方式有:
- 调幅(AM):又称“幅移键控”(ASK)
- 调频(FM):又称“频移键控”(FSK)
- 调相(PM):又称“相移键控”(PSK)
在这之前可以回忆一下高中学的三角函数的图形变化公式:
然后这里需要额外留意一点,正弦波形函数这里的【周期】指的是一个波形的需要的时间;模拟信号这里的【信号周期】是固定的一个未知的时间,比如1s 或者 4Π毫秒,在这段时间里有一整个正弦波形函数,有多个周期
下面这里比较复杂看了犯困,请自己仔细安装我上面讲的原理和下面的图,好好画一下图算一下就明白了
调幅(AM)
就是调整波形的上下振幅,可以看到下图例子,当一个信号周期是4
毫秒,一个信号周期里若波形为y=0*sin2x,则【A=0】,也就是振幅为0(没有起伏波形);一个信号周期里若波形为y=1*sin2x,则【A=1】,也就是振幅为1(最大值离x轴、最小值离x轴距离都是1)
;
调频(FM)
就是调整波形的频率,可以看到下图例子,当一个信号周期是4
毫秒,一个信号周期里若波形为y=sinx,则【
=1】,【T=2
】,【f=1/2
】,也就是【每一周期T=2
】里就有【1个波形】;一个信号周期里若波形为y=sin2x,则【
=2】,【T=
】,【f=1/
】,也就是【每一周期T=
】里就有【1个波形】
;
调相(PM)
就是调整相位,可以看到下图例子,当一个信号周期是4
毫秒,一个信号周期里若波形为y=sin(x+0),则【
=0】,也就是起始点在x=0处;一个信号周期里若波形为y=sin(x+
),则【
=
】,也就是整体左移
个距离,起始点在x=
chu
另外,结合上一章《通信基础》回顾一下基础:
【K个幅值】意思就是一个信号周期可以有K种码元状态(00\01\10...),也称【K进制码元】
假如一个信号周期传输【N比特】,那就码元有【
】种可能
所以【1码元】=【
】bit
对应调制这里,在基础调制的基础上
- 像我如果在调幅(AM)多加2个幅度值(A):y = 2 * sin2x、y = 3 * sin2x,不就有4种表示值了:y = 0 * sin2x表示00、y = 1 * sin2x表示01、y = 2 * sin2x表示10、y = 3 * sin2x表示11
- 同理,调频(FM)多加2个频率(
):y = sin1x、y = sin2x,不就有4种表示值了:y = sin1x表示00、y = sin2x表示01、y = sin3x表示10、y = sin4x表示11
- 调相也是,我就不再举例了.......
2、混合调制
还有一种调制方式:正交幅度调制
在基础调制的基础上增加幅值、频率、相位值得做法终究有限,而且麻烦,不能够表示更多得数值;于是人们就考虑把上面的基础调制结合在一起,形成一个复合函数的波形,就能参数越多就能代表更多值了(你想y=ax的参数a有A种结果、y=x+b的参数b有B种结果,那如果结合成y=a(x+b)不就是a和b这2个参数的可能结合起来,也就是能代表A*B个结果了吗)
但是由于因为频率和相位是相关的,即频率是相位随时间的变化率。所以一次只能调制频率和相位两个中的一个;那就只能把频率跟幅值的参数值结合了
;
所以【正交幅度调制(QAM)】就是把 调幅AM 和 调相PM 结合,成为一种复合函数
QAM调制方案:
QAM-xx这种调制方案的意思是这样的QAM可以调制出xx种信号(或者说幅值、码元)
例题
对于这个题,已知【奈氏定理】下的带宽是【200kHz】那么【极限波特率】就是【2W】=【2 * 200kHz】=【400k个码元 / s】
已知【4个幅值】也就是【一个码元有4种状态】
那么【一个码元信号量】= 【】=【2 bit】
所以【最大数据传输速率】= 【1个码元的信号量】*【几个码元 / s】=【2 bit】* 【400 k/s】= 800kbps
;
总结: