-
实操部分
-
Python 中测试 GPU 是否可用
打开 Python 交互环境,输入:import torch print("GPU 是否可用:", torch.cuda.is_available()) if torch.cuda.is_available(): print("当前GPU设备名称:", torch.cuda.get_device_name(0))
这段代码可以快速告诉你 PyTorch 是否能调用 GPU,以及当前使用的是哪块显卡。
-
使用
nvidia-smi
检查显卡驱动和状态
在命令行(终端、PowerShell)输入:nvidia-smi
它会显示显卡型号、驱动版本、CUDA Runtime 版本以及显存使用情况,是诊断GPU问题的常用工具。
-
常见错误及解决方案
-
No GPU found / CUDA device not available
-
确认你的机器有 NVIDIA GPU。
-
确认已安装正确的 NVIDIA 显卡驱动(版本需支持你安装的 CUDA 版本)。
-
确认 PyTorch 版本匹配你的 CUDA 版本(通过官网安装命令)。
-
检查是否在正确的 conda / 虚拟环境下运行。
-
-
CUDA版本不匹配(Mismatch)报错
-
检查显卡驱动版本:显卡驱动必须支持你运行的 CUDA Runtime 版本。
-
检查 PyTorch 的 CUDA 版本(比如 PyTorch-cu118 要求驱动版本 >= 525.x)。
-
升级或降级显卡驱动,或者重新安装匹配的 PyTorch 版本。
-
-
其他调试建议
-
重启电脑,有时驱动更新后需重启生效。
-
更新显卡驱动到最新稳定版本。
-
查看
torch.version.cuda
获取当前 PyTorch 使用的 CUDA 版本。
-
-
-
07-17
2644

08-07
3893

03-09
851

08-28
1716
