验证 GPU 是否可用 + 错误排查

  • 实操部分

    • Python 中测试 GPU 是否可用
      打开 Python 交互环境,输入:

      import torch
      print("GPU 是否可用:", torch.cuda.is_available())
      if torch.cuda.is_available():
          print("当前GPU设备名称:", torch.cuda.get_device_name(0))
      

      这段代码可以快速告诉你 PyTorch 是否能调用 GPU,以及当前使用的是哪块显卡。

    • 使用 nvidia-smi 检查显卡驱动和状态
      在命令行(终端、PowerShell)输入:

      nvidia-smi
      

      它会显示显卡型号、驱动版本、CUDA Runtime 版本以及显存使用情况,是诊断GPU问题的常用工具。

    • 常见错误及解决方案

      • No GPU found / CUDA device not available

        • 确认你的机器有 NVIDIA GPU。

        • 确认已安装正确的 NVIDIA 显卡驱动(版本需支持你安装的 CUDA 版本)。

        • 确认 PyTorch 版本匹配你的 CUDA 版本(通过官网安装命令)。

        • 检查是否在正确的 conda / 虚拟环境下运行。

      • CUDA版本不匹配(Mismatch)报错

        • 检查显卡驱动版本:显卡驱动必须支持你运行的 CUDA Runtime 版本。

        • 检查 PyTorch 的 CUDA 版本(比如 PyTorch-cu118 要求驱动版本 >= 525.x)。

        • 升级或降级显卡驱动,或者重新安装匹配的 PyTorch 版本。

      • 其他调试建议

        • 重启电脑,有时驱动更新后需重启生效。

        • 更新显卡驱动到最新稳定版本。

        • 查看 torch.version.cuda 获取当前 PyTorch 使用的 CUDA 版本。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值