- 博客(18)
- 收藏
- 关注
原创 [特殊字符]从零开始:Docker部署Python项目的保姆级教程
本教程详细介绍了使用Docker部署Python项目的完整流程。从Docker基础概念讲起,通过Flask项目示例,指导如何编写Dockerfile、构建镜像、本地测试和云服务器部署(包括腾讯云/阿里云)。教程包含常见问题解决方案、常用维护命令,并特别强调项目准备、端口配置等关键点。90%的Python项目可套用此模板,只需修改requirements.txt和主程序文件。适合需要快速实现项目隔离部署的开发者,文末还提供了延伸阅读建议。
2025-07-21 21:15:46
304
原创 手势识别系统部署到云服务器全流程(Docker版超详细保姆级教程)
本文介绍了使用Docker将Python手势识别系统部署到云服务器的完整流程。从项目准备(包括Flask应用、依赖文件和数据集)到编写Dockerfile(配置系统依赖和Python环境),再到服务器配置(远程登录、文件上传)和容器部署(镜像构建、端口映射、数据卷挂载)。最后提供了测试访问方法,并建议结合Nginx或Kubernetes实现高可用性。该教程适合初学者参考,帮助开发者实现AI项目的云端部署。
2025-07-21 21:07:58
509
原创 [特殊字符]史上最详细的 ROS Noetic 安装教程(Ubuntu 20.04)
摘要:本文详细介绍了在Ubuntu 20.04系统上安装ROS Noetic的完整步骤。内容包括安装前的系统版本检查、ROS软件源配置,安装ROS Noetic桌面完整版,初始化rosdep,环境变量设置以及创建工作空间等关键步骤。同时提供了常见问题解决方法(如rosdep报错、roscore启动问题)和使用清华源加速安装的选项。通过本文可完成ROS开发环境的完整配置,适合机器人开发初学者快速搭建开发环境。
2025-07-12 17:26:42
471
原创 [特殊字符]LabelMe标注转PaddleSeg数据集:多类掩码自动生成+配置文件输出(附完整Python脚本)
本文介绍了将LabelMe标注格式转换为PaddleSeg所需格式的Python脚本,支持多类别分割任务。脚本自动生成灰度掩码图和彩色可视化掩码,划分训练/验证集,并创建PaddleSeg配置文件。输入为LabelMe的json标注文件,输出包含图像副本、掩码文件、数据集划分列表和配置文件。核心功能包括多边形标注转换、彩色掩码生成和数据集自动划分。该工具适用于快速准备PaddleSeg训练数据,支持自定义类别映射,简化了语义分割任务的数据预处理流程。
2025-07-12 17:04:56
500
原创 docker离线镜像下载
摘要本文介绍了在受限网络环境下使用Docker离线镜像的方法。当无法直接从DockerHub拉取镜像时,可通过预先下载的镜像文件(如存储在网盘)进行离线分发。具体操作步骤包括:从提供的百度网盘链接(提取码1888)下载镜像文件nginx_latest.tar,使用docker load命令加载镜像,并通过docker images验证加载结果。这种方式解决了网络受限环境中的镜像获取问题。
2025-06-03 10:43:38
798
原创 Docker无法pull镜像的常见原因及解决方法汇总
本文系统总结了在使用 Docker 过程中遇到无法 pull 镜像的常见问题及解决方法,包括网络连接不稳定、镜像名称或 tag 错误、权限问题、公司代理限制等原因。针对不同场景提供了实际可用的解决方案,如配置国内加速器、更换 DNS、使用 docker login 授权、设置代理等。同时,为了解决在内网或离线环境下无法获取镜像的问题,文章还补充介绍了如何通过 docker save 与 docker load 进行离线镜像导出与导入,帮助用户在无网络环境下顺利部署容器服务。文章适用于新手和开发者快速排查
2025-05-13 11:42:22
3038
原创 [特殊字符] Docker 常见疑难杂症问题
在使用Docker时,常见问题包括容器无法访问宿主机网络、镜像构建卡顿、端口映射无效、时区不正确、文件权限问题、缓存失效、容器意外退出、Compose服务启动顺序错误、磁盘空间占用过大及中文乱码等。针对这些问题,可以采取使用特定网络模式、更换国内源、确保应用监听正确IP、挂载时区文件、调整目录权限、优化Dockerfile命令顺序、确保进程前台运行、使用健康检查或延迟启动脚本、定期清理未使用资源及设置环境变量等解决方案。这些措施有助于提高Docker的使用效率和稳定性。
2025-05-13 11:10:32
394
原创 [特殊字符] 计算机视觉面试题大全(附详细答案)| 深度学习 & CV求职必备
本文整理了50道高频计算机视觉面试题及其答案,涵盖了图像处理、特征提取、目标检测、分割、深度学习与项目部署等多个方面,适用于准备校招或社招的计算机视觉方向求职者。文章分为五个部分:基础与图像处理、特征提取与匹配、目标检测与分割、深度学习与视觉任务、项目与部署。每个部分都详细解答了相关领域的核心问题,如计算机视觉与图像处理的区别、RGB与HSV颜色空间、图像直方图、边缘检测、卷积、图像金字塔、特征点与描述子、SIFT、SURF与ORB的区别、RANSAC、光流、图像拼接、单应性矩阵、HOG特征、图像变换
2025-05-13 11:02:11
1449
原创 [特殊字符]深入理解语义分割模型 SegNet(附代码与图解)
SegNet 是由剑桥大学的研究人员提出的一种基于编码器-解码器结构的语义分割神经网络。编码器部分借鉴了 VGG16 的卷积结构;解码器部分通过最大池化索引(max-pooling indices)进行非线性上采样;无需全连接层,因此参数较少,易于训练。SegNet 是一种经典而高效的语义分割模型,非常适合入门与部署场景。本文从原理到代码实现,再到结果可视化,带你全方位掌握 SegNet。如果你正在研究图像分割任务,不妨试试用它作为起点!
2025-04-24 17:28:08
655
原创 Windows 环境下 Docker 部署 maxkb 及 ollama 使用指南
在大数据、知识库以及 AI 应用的浪潮下,maxkb与ollamamaxkb:通常用于知识库管理和高效检索,能够整合多种文档格式进行知识解析。ollama:则以 AI 模型及对话接口为核心,实现智能问答、数据交互和实时调试。这两者均支持 Docker 部署,极大简化了安装与环境隔离过程。接下来,我们就看看如何通过 Docker 快速部署和使用它们。本文详细介绍了如何在 Windows 平台下通过 Docker 部署 maxkb 与 ollama。
2025-04-12 21:17:33
815
原创 初识Three.js:轻松开启Web3D开发之旅
Three.js 是一个开源的 JavaScript 3D 引擎,基于 WebGL 开发,提供了简单直观的 API,可以让开发者快速构建3D场景、渲染模型、添加光影效果,甚至实现动画、物理交互等复杂功能。Three.js不仅功能强大,而且非常适合前端开发者快速切入3D世界。在浏览器端构建炫酷的3D交互界面,不再遥不可及。如果你有兴趣提升自己的视觉表现能力,不妨从Three.js开始,探索Web 3D的无限可能!
2025-04-08 22:14:43
420
原创 基于深度学习的手势识别系统设计与实现
本项目是一个基于深度学习的手势识别系统,采用PyTorch框架实现,结合MediaPipe进行手部关键点检测,支持实时手势识别、数据收集、模型训练和评估,以及方言翻译功能。系统还包含一个基于手势识别的石头剪刀布小游戏,为用户提供交互式体验。本项目成功实现了基于深度学习的手势识别系统,具有实时性高、准确率高、功能丰富等特点。通过结合多种先进技术,为用户提供了一个实用、有趣的手势识别平台。项目的模块化设计和良好的可扩展性为未来的功能扩展和性能优化提供了基础。
2025-04-07 15:44:21
2076
原创 [特殊字符] Transformer详解:结构原理、公式推导与工作机制
在自然语言处理(NLP)中,Transformer 模型自 2017 年《Attention is All You Need》提出以来,已经成为了语言模型的基石,被广泛应用于 BERT、GPT、T5 等预训练语言模型中。相比 RNN、LSTM,Transformer 更容易并行化,并且能更好地捕捉长距离依赖。Transformer 是一个Encoder-Decoder 架构,主要分为两个部分:编码器(Encoder):提取输入序列特征;解码器(Decoder):逐步生成输出序列。
2025-04-07 15:11:56
672
原创 ByteTrack算法详解:多目标跟踪的新突破
多目标跟踪任务的目标是:在视频序列中,持续识别并跟踪所有目标个体的轨迹。检测器(Detector):检测每一帧中的目标框;跟踪器(Tracker):将不同帧中的目标进行关联,形成轨迹。传统的如 DeepSORT 等方法依赖于高质量的检测结果,在遮挡或误检多发时容易失败。不依赖 ReID,部署轻便;有效利用低分数框恢复目标;精度高,MOTA 性能优异;实时性强,适用于工业部署。ByteTrack 提供了一种无需 ReID 的高效跟踪方法,适用于大多数实时跟踪任务。
2025-04-06 20:27:37
1191
原创 深入了解MediaPipe:谷歌开源的跨平台视觉AI框架
MediaPipe 是 Google Research 推出的一个跨平台、可定制的多媒体处理框架,主要面向 实时计算机视觉任务。它集成了许多常见的机器学习模型,并对图像流处理进行了高度优化,使得开发者可以轻松构建基于摄像头输入的 AI 应用。支持实时处理拥有丰富的预训练模型跨平台支持:支持 Android、iOS、桌面端(Linux、Windows、Mac)、Web(通过 WebAssembly)使用 C++ 编写,提供等高层API。
2025-04-04 13:53:09
2508
原创 手势识别系统:基于PyQt5的实时手势识别与方言翻译工具
本文介绍了一款基于计算机视觉技术的手势识别系统,该系统采用PyQt5构建图形界面,结合MediaPipe手部关键点检测和PyTorch深度学习框架,实现了实时手势识别和方言翻译功能。系统支持"你好"、"谢谢"、"再见"等多种常用手势,并能将识别结果翻译成成都话、川中方言等多种中国方言。技术实现上,系统通过MediaPipe提取手部21个关键点坐标,经预处理后输入深度学习模型进行分类。系统还提供了完整的数据收集和模型训练工具,使用户能够扩展自定义手势。
2025-03-31 16:29:21
1049
1
原创 如何使用yolov8完成病虫害检测
系统集成了Flask后端和Web前端界面,能够支持图片、视频以及实时摄像头输入,快速识别并定位病虫害区域。系统的主要功能包括:多源输入支持(图片上传、视频文件检测、实时摄像头检测),自动识别病虫害类型并显示检测框及置信度,结果展示包括实时检测结果和可视化信息。系统架构包括Web前端、Flask后端和YOLOv8模型,提供了详细的功能流程。文中还介绍了后端代码、前端界面以及模型训练、预测的实现。系统为农业生产提供了高效便捷的病虫害检测解决方案,能够提高农作物病虫害防治效率。
2025-03-28 19:34:54
1117
原创 香橙派使用教程(过程中可能出现的问题)
手册介绍了如何通过SSH和NoMachine进行远程登录,用户可以利用这些工具远程控制香橙派。其次,手册详细讲解了在香橙派上安装和配置PyCharm的过程,包括安装必要的依赖包、配置Python解释器、创建虚拟环境以及安装Home Assistant等软件。对于开发者而言,OpenCV的安装也是手册的重点内容之一,用户可以通过简单的命令安装并验证OpenCV的版本。此外,手册还涉及了如何启用香橙派的串口功能及解决USB串口无法使用的问题,并提供了检测USB摄像头的指南。
2025-03-28 11:27:28
1019
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人