自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 Datawhale X 李宏毅苹果书 AI夏令营 学习笔记(三)

共享参数(parameter sharing):在卷积层中,相同的滤波器在整个输入图像上滑动,共享权重,减少了模型的参数数量。内部协变量偏移:在深度网络的训练过程中,每一层的输入数据分布会随着网络训练的加深而变化,这种变化可能导致模型训练变得困难,批量归一化通过规范化来减少这种偏移,这也是批量归一化有作用的表现。特征归一化(feature normalization)是多种在同样数值范围内采用不同的维度来制造比较好的误差表面,让训练变得比较容易一点的方法的统称。

2024-09-03 22:14:27 762

原创 Datawhale X 李宏毅苹果书 AI夏令营 学习笔记(二)

优化算法经过长期进化,从最原始的梯度下降到最终的学习率调度,逐渐变得更加复杂和高效。其中mit是动量。这个版本里面有动量,其不是顺着某个时刻算出的梯度方向来更新参数,而是把过去所有算出梯度的方向做一个加权总和当作更新的方向。接下来的步伐大小为mitσit。最后通过ηt来实现学习率调度。除了Adam之外,还有许多变体,他们之间的区别主要在于 mit 和 σit 的计算方式,或者学习率调度的策略。优化器的选择往往需要根据具体问题进行实验与调整。

2024-08-31 23:28:06 746

原创 Datawhale X 李宏毅苹果书 AI夏令营 学习笔记(一)

在对模型进行优化时,模型可能会收敛于或,由于这些位置梯度为零,也就是参数对损失微分为零的时候,参数无法更新,训练和优化便会停滞,无法进行下去。局部极小值和鞍点都是,在这个点梯度为0,损失无法下降,但是与局部极小值不同,鞍点可以从其他方向逃离,使模型可以继续优化。

2024-08-27 15:57:20 1454 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除