题目
题目描述
有形如:ax^3+bx^2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 −100 至100 之间),且根与根之差的绝对值 ≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 2 位。
提示:记方程 f(x)=0,若存在 22个数 x1 和 x2,且 x1<x2,f(x1)×f(x2)<0,则在 (x1,x2) 之间一定有一个根。
输入格式
一行,4个实数 a,b,c,d。
输出格式
一行,3 个实根,从小到大输出,并精确到小数点后 2 位。
输入输出样例
代码
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
double a[4];
double equation(double x)
{
return a[0] * x * x * x + a[1] * x * x + a[2] * x + a[3];
}
void find()
{
for (double i = -100; i <= 100; i++)
{
double x1 = i;
double x2 = i + 1;
if (equation(x1) == 0)
{
printf("%.2lf ", x1);
}
else if (equation(x1) * equation(x2) < 0)//在此区间内有一个根
{
while (x1+0.001<= x2)
{
double mid = (x1 + x2) / 2;
if (equation(mid) * equation(x1) < 0) {
x2 = mid ;
}
else
{
x1 = mid;
}
}
printf("%.2lf ",x1);
}
}
}
int main()
{
for (int i = 0; i < 4; i++)
{
scanf("%lf", &a[i]);
}
find();
return 0;
}