在自然语言处理(NLP)的领域中,有许多模型不断涌现,而BERT(Bidirectional Encoder Representations from Transformers)无疑是其中一颗耀眼的明星。今天,我们就来深入探究一下BERT的工作原理,以及它为何能成为解决众多自然语言处理任务的通用工具。
什么是BERT?
BERT是由谷歌在2018年推出的深度学习模型,其全称为“Bidirectional Encoder Representations from Transformers”,旨在帮助机器理解人类语言的复杂细微差别。得益于基于Transformer的架构,BERT能够把握文本中单词的深层含义和上下文。这使得它在文本分类、翻译、问答和语言推理等任务中表现尤为出色。
自然语言中常常存在具有多种含义的单词或短语。BERT通过分析周围的上下文——即前后的单词和句子——来确定其含义。过去的语言模型要么从左到右处理文本,要么从右到左处理。而BERT能够同时从两个方向读取文本,从而更好地理解每个单词的完整上下文。
BERT主要有两个版本:基础版(base)和大型版(large)。它们的架构相同,但使用的参数数量不同。BERT大型版需要微调的参数数量是基础版的三倍多。
BERT与Transformer的区别
Transformer是2017年推出的神经网络架构,它使用自注意力机制来处理序列,而无需依赖循环结构。BERT则是基于Transformer架构在2018年推出的,专注于预训练大规模语言模型,以实现对文本的深度双向理解。
两者的主要区别在于目的。Tra