差分数组+前缀和——小而美的算法

目录

前言

一、差分数组是什么?

差分数组的定义

差分数组的作用

差分数组的性质

二、应用

1.Leetcode-1109航班预定统

总结


前言

最近,做题的时候总是会用到数组范围内增减变量,差分数组和前缀和便能从O(n)->O(1),可以降低时间复杂度。所以,这篇短文主要就是记录一下差分数组和前缀和的性质、技巧和应用。

一、差分数组是什么?

差分数组的定义

差分数组:差分数组就是原始数组相邻元素之间的差。

其实差分数组是一个辅助数组,从侧面来表示给定某一数组的变化,一般用来对数组进行区间修改的操作。

比如说某一个数组【1,2,3,4,5,6,7】,将其区间【1,4】的数值全部加上3,其实当原始数组中元素同时加上或者减掉某个数,那么他们的差分数组其实是不会变化的.

差分数组的作用

差分数组的作用就是求多次进行区间修改后的数组。构造出差分数组,就可以快速进行区间增减了。花费O(1)的时间修改 diff 数组,就相当于给原数组的整个区间做了修改。

注意 :只能是区间元素同时增加或减少相同的数的情况才能用。

差分数组的性质

1)对于原始数组arr[a, b, c, d],其差分数组为:diff[a, b-a, c-b, d-c]

2)差分数组的前缀和数组 == 原始数组,即:求差分数组的前缀和数组,即可还原回去。[a, a + b-a, a+b-a + c-b, ...]

3)对原始数组的区间增加,可以转化为对其差分数组的两点增加( O(n) -> O(1) ): 假设对arr[i ... j]区间每个元素全部增加delta,则等价于:diff[i] += delta,diff[j+1] -= delta

二、应用

1.Leetcode-1109航班预定统计

这里有 n 个航班,它们分别从 1 到 n 进行编号。

有一份航班预订表 bookings ,表中第 i 条预订记录 bookings[i] = [firsti, lasti, seatsi] 意味着在从 firsti 到 lasti (包含 firsti 和 lasti )的 每个航班 上预订了 seatsi 个座位。

请你返回一个长度为 n 的数组 answer,里面的元素是每个航班预定的座位总数。

示例 1:

输入:bookings = [[1,2,10],[2,3,20],[2,5,25]], n = 5
输出:[10,55,45,25,25]
解释:
航班编号        1   2   3   4   5
预订记录 1 :   10  10
预订记录 2 :       20  20
预订记录 3 :       25  25  25  25
总座位数:      10  55  45  25  25
因此,answer = [10,55,45,25,25]

示例 2:

输入:bookings = [[1,2,10],[2,2,15]], n = 2
输出:[10,25]
解释:
航班编号        1   2
预订记录 1 :   10  10
预订记录 2 :       15
总座位数:      10  25
因此,answer = [10,25]

提示:

  • 1 <= n <= 2 * 10^4
  • 1 <= bookings.length <= 2 * 10^4
  • bookings[i].length == 3
  • 1 <= firsti <= lasti <= n
  • 1 <= seatsi <= 10^4

本题,说成人话就是,给你输入一个长度为n的数组nums,其中所有元素都是0.再给你输入一个bookings,里面是若干三元组(i,j,k),每个三元组的含义就是要求你给nums数组的闭区间【i-1,j-1】中所有元素都加上k。请你返回最后的nums数组是多少?

这样看来,这就是典型的一道差分数组模板题了,可以设start =  bookings[i][0],end = bookings[i][1],delta  = bookings[i][2]。然后对始末点,进行改变。最后求前缀和就可以求出答案了。

代码实现如下:

class Solution {
    public int[] corpFlightBookings(int[][] bookings, int n) {
        int[] diff = new int[n];
        for (int[] booking : bookings) {
            int start = booking[0], end = booking[1], delta = booking[2];
            diff[start - 1] += delta;
            if (end < n) {
                diff[end] -= delta;
            }
        }

        for (int i = 1; i < n; i++) {
            diff[i] += diff[i - 1];
        }
        return diff;
    }

}


总结

个人感觉,差分数组是与前缀和数组所对应的一种逆操作,类似于求导和积分,也就是说,对差分数组求前缀和,可以得到原数组,同样的,对前缀和数组求差分,也可以得到原数组。当我们需要对原数组的不同区间施加不同的增量,我们只要按规则修改差分数组即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值