Adding Data|添加数据

-----------------------------------------------------------------------------------------------

这是我在我的网站中截取的文章,有更多的文章欢迎来访问我自己的博客网站rn.berlinlian.cn,这里还有很多有关计算机的知识,欢迎进行留言或者来我的网站进行留言!!!

-----------------------------------------------------------------------------------------------

一、数据增强的定义

数据增强是一种机器学习技术,它通过对原始数据进行变换(如旋转、缩放、裁剪等)来生成新的训练样本。这样做可以增加训练数据的多样性,帮助模型更好地学习和泛化。

通俗理解:

就像通过给厨师提供不同形状和大小的食材来训练他们识别食材,数据增强帮助模型在面对不同变化时仍能准确识别。


BB269B80-E270-4BC5-B463-682B7E80CF7D.png

这幅图片展示了数据增强(Data augmentation)的概念。数据增强是一种通过修改现有训练样本来创建新训练样本的技术。图片中有一个红色的字母“A”,通过不同的变换(如旋转、颜色改变、添加噪声等)生成了多个新的样本。这些变换包括:

  1. 将“A”旋转成不同角度。

  2. 增大“A”的尺寸。

  3. 缩小“A”的尺寸。

  4. 将“A”进行灰度处理。

  5. 将“A”进行镜像转换

这些变换的目的是增加训练数据的多样性,从而提高模型的泛化能力。


二、引入失真进行数据增强

1. 引入图像失真

6034B962-D8FC-4164-A1F2-8F886738903C.png

这幅图片说明了数据增强的一种技术,即通过引入图像失真来增加数据集的多样性。左侧的小图是一个原始的、带有网格的图像。右侧的大图则是经过失真处理后的图像,可以看到网格线发生了弯曲和变形,整个图像看起来像是被某种力场扭曲了。

这种失真处理模拟了图像在现实世界中可能遇到的各种变形情况,如由于拍摄角度、镜头畸变或物体本身的不规则形状导致的图像变化。通过这种方式,数据增强技术可以帮助训练机器学习模型,使其在面对真实世界中可能出现的图像变形时,仍能保持较高的识别准确率。这种方法特别适用于图像识别和计算机视觉任务,可以提高模型的鲁棒性和泛化能力。


2. 引入噪声

99898B54-C13C-4DCD-9881-C4616BCF8207.png

这幅图片介绍了语音识别中的数据增强方法。它展示了如何通过添加不同类型的噪声来增强原始音频数据:

  1. 原始音频是一句语音搜索指令:“What is today’s weather?”。

  2. 第一种增强是在原始音频中加入人群噪声的背景音。

  3. 第二种增强是在原始音频中加入汽车噪声的背景音。

  4. 第三种增强是在原始音频中加入在信号不佳的移动电话连接下的音频效果。

这些增强方法有助于提高语音识别系统在不同环境下的鲁棒性和准确性。


总结

073E4DE9-948E-443C-BB4D-A5EA6B8E2084.png

这幅图片展示了数据增强中引入失真的方法。图片强调了引入的失真应该代表测试集中可能出现的噪声或失真类型。对于音频数据,提到了背景噪声和手机信号不佳的情况。对于图像数据,展示了通过添加随机噪声来改变像素强度的方法。图片还指出,通常不建议添加纯粹随机或无意义的噪声,因为这对模型训练没有帮助。


四、数据合成的定义

77AF4B93-7823-4E92-B8BE-D8D56CA0DD61.png

数据合成是一种技术,它通过生成人工数据来扩充训练集。这种方法可以创建出在现实世界中可能不存在的新数据样本。

通俗理解:

就像是一个画家根据已有的画作风格创作出新的画作,数据合成帮助机器学习模型通过新的、人工生成的数据来学习和适应更多样的情况。


五、照片光学字符识别(OCR)的人工数据合成

8B4D7A55-308A-4B95-88BD-E74A566D227A.png

这幅图片展示了用于照片光学字符识别(OCR)的人工数据合成示例。图片中是纽约时代广场的夜景,充满了各种广告牌和霓虹灯。在这些广告牌上,用红色和黄色的框标出了一些文本区域。这些框可能表示通过人工合成技术添加或修改的文本,以增强用于OCR训练的数据集。这种方法可以帮助提高OCR系统在复杂背景下识别文本的能力。


2E7077BC-D1BC-48D2-8A38-A3F416A4541A.png

这幅图片展示了用于照片光学字符识别(OCR)的人工数据合成的对比示例。左侧是“真实数据”(Real data),显示了一组真实的、不同字体和大小的字母图像。右侧是“合成数据”(Synthetic data),同样展示了一组字母,但这些字母图像是通过人工合成生成的,可能在样式、大小或清晰度上有所不同。这种合成数据可用于增强OCR系统的训练集,以提高其在多样化条件下的性能。


六、人工智能开发方法对比

00A66190-E7E9-4740-A16C-29747707D71D.png

这幅图片对比了两种不同的人工智能系统开发方法:传统的模型中心方法和数据中心方法。

  1. 传统的模型中心方法

    • 图中上半部分展示了这种方法,其中AI被表示为“代码(算法/模型)+ 数据”。

    • 这种方法强调在算法或模型上的工作,即开发和优化代码来处理数据。

  2. 数据中心方法

    • 图中下半部分展示了这种方法,其中AI同样被表示为“代码(算法/模型)+ 数据”,但强调了对数据的工作。

    • 这种方法强调数据的重要性,即通过改进数据的质量、多样性和处理方式来提升AI系统的性能。

两种方法都认识到代码和数据是构成AI的两个基本要素,但它们在开发过程中的侧重点不同。

-----------------------------------------------------------------------------------------------

这是我在我的网站中截取的文章,有更多的文章欢迎来访问我自己的博客网站rn.berlinlian.cn,这里还有很多有关计算机的知识,欢迎进行留言或者来我的网站进行留言!!!

-----------------------------------------------------------------------------------------------

### 如何在图表中添加数据标签 为了在 Python 的 Matplotlib 图表中添加数据标签,可以利用 `text` 或者更方便的 `annotate` 函数。这些函数允许精确控制文本的位置以及样式。 对于简单的文本标注,可以直接调用 `plt.text(x, y, 'string', ...)` 方法,在指定坐标 (x,y) 处显示字符串内容[^4]。如果希望创建带有箭头或其他样式的注解,则应考虑使用 `plt.annotate()` 来实现更加复杂的布局和外观定制化需求。 下面给出一个具体的例子展示如何向折线图中的各个点添加数值作为标签: ```python import matplotlib.pyplot as plt import numpy as np # 创建一些测试数据 x = np.linspace(0, 9, 10) y = x ** 2 # 绘制图形并设置线条属性 plt.plot(x, y, label='Quadratic Curve', c='r') for i in range(len(x)): plt.text(x[i], y[i]+0.5, f'({x[i]}, {int(y[i])})', ha='center') plt.legend() plt.grid(True) plt.title('Adding Data Labels to Points') plt.xlabel('X Axis Label') plt.ylabel('Y Axis Label') plt.show() ``` 此代码片段展示了怎样通过循环遍历每一个数据点,并在其上方适当位置放置对应的坐标值作为说明文字。这里还加入了轻微偏移 (`y[i]+0.5`) 和水平居中对齐参数 (`ha='center'`) 来优化视觉效果。 #### 使用 annotate 添加带箭头指向的数据标签 当需要为特定点提供额外解释或者强调某些特征时,`annotate` 提供了一个灵活的选择。它不仅能够像 `text` 那样简单地标记位置,还可以连接一条指引线到目标对象上,从而使得关系表达得更为直观清晰。 ```python fig, ax = plt.subplots() ax.set_xlim([0, 8]) ax.set_ylim([-1, 7]) line, = ax.plot(range(7), 'o-', lw=2) annotates = [ ('First point', (0, 0)), ('Second point', (1, 1)) ] for name, xy in annotates: ax.annotate(name, xy=xy, xycoords='data', xytext=(-40, 30), textcoords='offset points', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='bottom' ) plt.show() ``` 上述实例演示了如何定义多个注释项并将它们应用到同一张图里;同时设置了不同的相对位移量(`xytext`) 及其他格式选项来调整最终呈现形式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Learn Beyond Limits

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值