队列
队列是只允许在一段进行插入,而在另一端进行删除操作的线性表
允许插入的称谓 队尾,允许删除的一端 队头
顺序队列
循环队列
数组 实现的队列通常采用循环队列的形式,以充分利用空间
链表 实现的队列可以动态分配内存,没有固定大小限制
常用操作,入队,出队
先进先出,FIFO
作用:缓冲,速度不匹配
typedef struct queue {
DATATYPE *array;
int tlen;
int head;
int tail;
}SeqQue;
SeqQue* CreateSeqQue(int len)
{
SeqQue* sq = malloc(sizeof(SeqQue));
if(NULL == sq)
{
perror("CreateSeqQue malloc");
return NULL;
}
sq->array = malloc(sizeof(DATATYPE)*len);
if(NULL == sq->array)
{
perror("CreateSeqQue malloc2");
return NULL;
}
sq->head = 0 ;
sq->tail = 0;
sq->tlen = len;
return sq;
}
int EnterSeqQue(SeqQue*sq,DATATYPE*data)
{
if(IsFullSeqQue(sq))
{
printf("queue is full\n");
return 1;
}
memcpy(&sq->array[sq->tail],data,sizeof(DATATYPE));
//sq->tail++;
sq->tail = (sq->tail+1 )%sq->tlen;
return 0;
}
int QuitSeqQue(SeqQue* sq)
{
if(IsEmptySeqQue(sq))
{
printf("queue is empty\n");
return 1;
}
sq->head = (sq->head+1)%sq->tlen;
return 0;
}
DATATYPE* GetHeadSeqQue(SeqQue* sq)
{
return &sq->array[sq->head];
}
int IsEmptySeqQue(SeqQue* sq)
{
return sq->head == sq->tail; //重点 利用% 循环储存
}
int IsFullSeqQue(SeqQue* sq)
{
return (sq->tail+1)%sq->tlen == sq->head; // 预留位置判断Full
}
int DestroySeqQue(SeqQue* sq)
{
free(sq->array);
free(sq);
return 0;
}
树
树:n(n>=0)个结点的有限集合。n = 0 ,空树。
在任意一个非空树中,
1,有且仅有一个特定的根结点
2,当 n>1 时,其余结点可分为m个互不相交的有限集合T1,T2,T3.。。。。Tm,其中每一个
集合又是一个树,并且称谓子树。
结点拥有子树的个数称谓结点的度。度为0的结点称谓叶结点。度不为0,称谓分支结点。
树的度数是指,这棵树中,最大的结点的度数,称谓树的度数。
树的深度或高度,从根开始,根为第一层,根的孩子为第二层。
树的存储,顺序结构,链式结构。
二叉树,binary tree
n个结点的有限集合,集合要么为空树,要么由一个根结点和两棵互不相交,分别称谓根结点的左子树和右子树的二叉树组成。。
特点
1,每个结点最多两个子树。
2,左子树和右子树是有顺序的,次序不能颠倒。
3,如果某个结点只有一个子树,也要区分左,右子树。
特殊的二叉树
1,斜树,所有的结点都只有左子树,左斜树,所有结点都只有右子树,右树。
2,满二叉树,所有的分支结点都存在左右子树,并且叶子都在同一层上。
3,完全二叉树,对于一颗有n个结点的二叉树按层序编号,如果编号i(1<=i<=n)的结点于同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这可树为完全二叉树。
特性(选择考)
1,在二叉树的第i层上最多有 2^(i-1) 个结点 i>=1
2, 深度为 k 的二叉树至多有 2^k -1 个结点 k>=1
3,任意一个二叉树T,如果其叶子结点的个数是n0,度数为2的结点数为 n2, n0 = n2 +1;
4,有n个结点的完全二叉树深度为(logn/log 2) +1;
广度遍历BFS
深度遍历DFS
前序,根左右,先访问根,然访问左,访问右。
中序,左根右,先从根开始(不是先访问根),从左开始访问,在访问根,在访问右结点。
后序,左右根,先从根开始(不是先访问根),先访问左,在访问右。在访问根。
时间复杂度相同(O (n))
typedef char DATATYPE;
typedef struct _treenode
{
DATATYPE data;
struct _treenode* left;
struct _treenode* right;
}TreeNode;
char data[]="abd##eh###cf#i##g##";
int idx=0;
void CreateTree(TreeNode**root)
{
char c = data[idx++];
if('#'== c)
{
*root = NULL;
}
else
{
*root = malloc(sizeof(TreeNode));
if(NULL == *root)
{
perror("CreateTree malloc error\n");
return ;
}
(*root)->data = c;
CreateTree(&(*root)->left);
CreateTree(&(*root)->right);
}
}
//根左右
void PreOrderTravel(TreeNode* root)
{
if(NULL == root)
{
return;
}
else
{
printf("%c",root->data);
PreOrderTravel(root->left);
PreOrderTravel(root->right); ///递归思想
}
}
//中左右
void InOrderTravel(TreeNode* root)
{
if(NULL == root)
{
return;
}
else
{
InOrderTravel(root->left);
printf("%c",root->data);
InOrderTravel(root->right);
}
}
//左右中
void PostOrderTravel(TreeNode* root)
{
if(NULL == root)
{
return;
}
else
{
PostOrderTravel(root->left);
PostOrderTravel(root->right);
printf("%c",root->data);
}
}
void DestroyTree(TreeNode* root)
{
if(NULL == root)
{
return;
}
else
{
DestroyTree(root->left);
DestroyTree(root->right);
free(root);
}
}
int main(int argc, char **argv)
{
TreeNode* root;
CreateTree(&root);
PreOrderTravel(root);
printf("\n");
InOrderTravel(root);
printf("\n");
PostOrderTravel(root);
printf("\n");
//system("pause");
return 0;
}