目录
一、Spring AI 和Spring AI Alibaba
前言:
2025年真的是AI大爆发的一年,以后无论是什么行业我想都需要AI+了,作为一名计算机人,你不学习AI就会被out。我在想以前的项目都叫做传统项目,以后的项目都会是传统+智能结合项目了,处在时代的风口,抓住机会趁现在就起飞吧!
我在看现在关于Spring AI的资料很杂,并不像传统的那些存在了好长时间的技术,如框架、MySQL这些资料齐全。刚好在今年上半年跟随着老师接触过大模型,在做学校的大集训时也翻过Spring AI的官方文档,结合了传统项目加上了大模型进行了一个整合,我也不算是零基础了吧。现在想着再深耕一下Spring AI Alibaba,以下是我的自学笔记:
一、Spring AI 和Spring AI Alibaba
我们先来了解一下什么是Spring AI?其官方文档是这样说的:
Spring AI
项目旨在简化应用程序的开发过程,在不增加不必要的复杂性的前提下整合 AI(人工智能)功能。该项目从 LangChain 和 LlamaIndex 等著名 Python 项目中汲取灵感,但 Spring AI 并不是这些项目的直接移植。项目成立的信念是,下一波生成式人工智能应用将不仅仅是 Python 开发人员的专利,它将在多种编程语言中无处不在。
也就是Spring AI = 让 Java 开发者用最少的代码,快速把各种 AI 能力(大模型、图像识别等)塞进自己的程序里。
那么什么又是Spring AI Alibaba?再来看官方文档:
Spring AI Alibaba 概览-阿里云Spring AI Alibaba官网官网
Spring AI Alibaba(SAA) 是一款以 Spring AI 为基础,深度集成百炼平台,支持 ChatBot、工作流、多智能体应用开发模式的 AI 框架。
也就是Spring AI Alibaba = 用 Spring 的简单方式,调用阿里的 AI 服务(通义千问、阿里云 AI 等),省去适配阿里接口的麻烦。
总结:Spring AI 是 Java 开发者调用各类 AI 服务(大模型、图像识别等)的统一简化工具;Spring AI Alibaba 是专门适配阿里系 AI 服务(通义千问、阿里云 AI 等)并深度融合其生态的定制版工具。
二、Spring AI Alibaba快速入门
下面我们来使用Spring AI Alibaba来实现一个简单的聊天机器人吧!
1.环境
注:Spring Boot版本必须选择3.0以上的版本,JDK也必须选择17及以上
Spring Boot 3.4.4、JDK17、Spring AI Alibaba 1.0.0.2
pom.xml:
下面将使用两种方式调用大模型:ollama和阿里百炼,并使用两种方式输出:直接输出和流式输出。
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.hl</groupId>
<artifactId>spring-demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>spring-demo</name>
<description>spring-demo</description>
<properties>
<java.version>17</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<spring-boot.version>3.4.4</spring-boot.version>
<spring-ai-alibaba.version>1.0.0.2</spring-ai-alibaba.version>
<spring-ai.version>1.0.0</spring-ai.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- spring-ai-alibaba -->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!-- ollama -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-ollama</artifactId>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>${spring-boot.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-bom</artifactId>
<version>${spring-ai-alibaba.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>${spring-ai.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>${spring-boot.version}</version>
<configuration>
<mainClass>com.hl.springdemo.SpringDemoApplication</mainClass>
<skip>true</skip>
</configuration>
<executions>
<execution>
<id>repackage</id>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
2.ollama
application.yml:
spring:
ai:
ollama:
base-url: http://localhost:11434
chat:
options:
model: qwen2.5:3b
#spring事务管理日志
logging:
level:
org.springframework.jdbc.support.JdbcTransactionManager: debug
配置ChatClient:
@Configuration
public class ChatClientConfig {
@Bean
public ChatClient ollamaChatClient(@Qualifier("ollamaChatModel") OllamaChatModel ollamaChatModel) {
return ChatClient.builder(ollamaChatModel).build();
}
}
controller测试:
调用两个接口进行直接输出和流式输出:
package com.hl.springdemo.controller;
import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.tags.Tag;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
@Slf4j
@RestController
public class ChatController {
@Autowired
@Qualifier("ollamaChatClient")
private ChatClient ollamaChatClient;
@GetMapping("/chat1")
public String chat(@RequestParam(value = "question", defaultValue = "你是谁?") String question) {
log.info("question: {}", question);
String content = ollamaChatClient.prompt()
.user(question)
.call()
.content();
return content;
}
@GetMapping(value = "/stream", produces = "text/html;charset=UTF-8")
public Flux<String> streamChat(@RequestParam(value = "question", defaultValue = "你是谁?") String question){
log.info("question: {}", question);
return ollamaChatClient.prompt()
.user("你是谁?")
.stream()
.content();
}
}
运行结果:
浏览器访问localhost:8080/chat1?question=你是谁?和localhost:8080/stream?question=你是谁?
流式输出是大模型持续返回一些话给你知道完成,现在我们使用的平台(通义和豆包)都是流式输出。
3.阿里百炼
这是第二种调用大模型的方式,需要在阿里云百炼平台上开通服务并生成一个自己的API Key:
application.yml:
在上面的yml中继续配置,完整文件如下:
server:
port: 8080
spring:
ai:
ollama:
base-url: http://localhost:11434
chat:
options:
model: qwen2.5:3b
dashscope:
api-key: ${AI_DASHSCOPE_API_KEY}
chat:
options:
model: qwen-max
#spring事务管理日志
logging:
level:
org.springframework.jdbc.support.JdbcTransactionManager: debug
配置ChatClient:
完整代码如下:
package com.hl.springdemo.config;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class ChatClientConfig {
@Bean
public ChatClient ollamaChatClient(@Qualifier("ollamaChatModel") OllamaChatModel ollamaChatModel) {
return ChatClient.builder(ollamaChatModel).build();
}
@Bean
public ChatClient dashscopeChatClient(@Qualifier("dashscopeChatModel")DashScopeChatModel dashscopeChatModel) {
return ChatClient.builder(dashscopeChatModel).build();
}
}
在controller中添加接口:
@GetMapping("/chat2")
public String chat2(@RequestParam(value = "question", defaultValue = "你是谁?") String question) {
log.info("question: {}", question);
String content = dashscopeChatClient.prompt()
.user(question)
.call()
.content();
return content;
}
配置环境变量:
打开idea的运行配置,添加环境变量:AI_DASHSCOPE_API_KEY=你的api-key
接着运行访问localhost:8080/chat2?question=你是谁?即可!