Spring AI Alibaba

目录

前言:

一、Spring AI 和Spring AI Alibaba

二、Spring AI Alibaba快速入门

1.环境

2.ollama

3.阿里百炼


前言:

        2025年真的是AI大爆发的一年,以后无论是什么行业我想都需要AI+了,作为一名计算机人,你不学习AI就会被out。我在想以前的项目都叫做传统项目,以后的项目都会是传统+智能结合项目了,处在时代的风口,抓住机会趁现在就起飞吧!

        我在看现在关于Spring AI的资料很杂,并不像传统的那些存在了好长时间的技术,如框架、MySQL这些资料齐全。刚好在今年上半年跟随着老师接触过大模型,在做学校的大集训时也翻过Spring AI的官方文档,结合了传统项目加上了大模型进行了一个整合,我也不算是零基础了吧。现在想着再深耕一下Spring AI Alibaba,以下是我的自学笔记:

一、Spring AI 和Spring AI Alibaba

        我们先来了解一下什么是Spring AI?其官方文档是这样说的:

简介 :: Spring AI 中文文档

        Spring AI 项目旨在简化应用程序的开发过程,在不增加不必要的复杂性的前提下整合 AI(人工智能)功能。

        该项目从 LangChain 和 LlamaIndex 等著名 Python 项目中汲取灵感,但 Spring AI 并不是这些项目的直接移植。项目成立的信念是,下一波生成式人工智能应用将不仅仅是 Python 开发人员的专利,它将在多种编程语言中无处不在。

        也就是Spring AI = 让 Java 开发者用最少的代码,快速把各种 AI 能力(大模型、图像识别等)塞进自己的程序里。

        那么什么又是Spring AI Alibaba?再来看官方文档:

Spring AI Alibaba 概览-阿里云Spring AI Alibaba官网官网

        Spring AI Alibaba(SAA) 是一款以 Spring AI 为基础,深度集成百炼平台,支持 ChatBot、工作流、多智能体应用开发模式的 AI 框架。

        也就是Spring AI Alibaba = 用 Spring 的简单方式,调用阿里的 AI 服务(通义千问、阿里云 AI 等),省去适配阿里接口的麻烦。

        总结:Spring AI 是 Java 开发者调用各类 AI 服务(大模型、图像识别等)的统一简化工具;Spring AI Alibaba 是专门适配阿里系 AI 服务(通义千问、阿里云 AI 等)并深度融合其生态的定制版工具。

二、Spring AI Alibaba快速入门

        下面我们来使用Spring AI Alibaba来实现一个简单的聊天机器人吧!

1.环境

注:Spring Boot版本必须选择3.0以上的版本,JDK也必须选择17及以上

Spring Boot 3.4.4、JDK17、Spring AI Alibaba 1.0.0.2

pom.xml:

下面将使用两种方式调用大模型:ollama和阿里百炼,并使用两种方式输出:直接输出和流式输出。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.hl</groupId>
    <artifactId>spring-demo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>spring-demo</name>
    <description>spring-demo</description>
    <properties>
        <java.version>17</java.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <spring-boot.version>3.4.4</spring-boot.version>
        <spring-ai-alibaba.version>1.0.0.2</spring-ai-alibaba.version>
        <spring-ai.version>1.0.0</spring-ai.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>com.mysql</groupId>
            <artifactId>mysql-connector-j</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>


        <!-- spring-ai-alibaba -->
        <dependency>
            <groupId>com.alibaba.cloud.ai</groupId>
            <artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
        </dependency>
        <!-- ollama -->
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-starter-model-ollama</artifactId>
        </dependency>
    </dependencies>
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-dependencies</artifactId>
                <version>${spring-boot.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>

            <dependency>
                <groupId>com.alibaba.cloud.ai</groupId>
                <artifactId>spring-ai-alibaba-bom</artifactId>
                <version>${spring-ai-alibaba.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>

            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>${spring-ai.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <version>${spring-boot.version}</version>
                <configuration>
                    <mainClass>com.hl.springdemo.SpringDemoApplication</mainClass>
                    <skip>true</skip>
                </configuration>
                <executions>
                    <execution>
                        <id>repackage</id>
                        <goals>
                            <goal>repackage</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

2.ollama

application.yml:

spring:
  ai:
    ollama:
      base-url: http://localhost:11434
      chat:
        options:
          model: qwen2.5:3b

#spring事务管理日志
logging:
  level:
    org.springframework.jdbc.support.JdbcTransactionManager: debug

 配置ChatClient:

@Configuration
public class ChatClientConfig {

    @Bean
    public ChatClient ollamaChatClient(@Qualifier("ollamaChatModel") OllamaChatModel ollamaChatModel) {
        return ChatClient.builder(ollamaChatModel).build();
    }

}

controller测试:

调用两个接口进行直接输出和流式输出:

package com.hl.springdemo.controller;

import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.tags.Tag;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

@Slf4j
@RestController
public class ChatController {
    @Autowired
    @Qualifier("ollamaChatClient")
    private ChatClient ollamaChatClient;


    @GetMapping("/chat1")
    public String chat(@RequestParam(value = "question", defaultValue = "你是谁?") String question) {
        log.info("question: {}", question);
        String content = ollamaChatClient.prompt()
                .user(question)
                .call()
                .content();
        return content;
    }

    

    @GetMapping(value = "/stream", produces = "text/html;charset=UTF-8")
    public Flux<String> streamChat(@RequestParam(value = "question", defaultValue = "你是谁?") String question){
        log.info("question: {}", question);
        return ollamaChatClient.prompt()
                .user("你是谁?")
                .stream()
                .content();
    }
}

运行结果:

浏览器访问localhost:8080/chat1?question=你是谁?localhost:8080/stream?question=你是谁?

流式输出是大模型持续返回一些话给你知道完成,现在我们使用的平台(通义和豆包)都是流式输出。

3.阿里百炼

        这是第二种调用大模型的方式,需要在阿里云百炼平台上开通服务并生成一个自己的API Key:

大模型服务平台百炼控制台

application.yml:
在上面的yml中继续配置,完整文件如下:

server:
  port: 8080

spring:
  ai:
    ollama:
      base-url: http://localhost:11434
      chat:
        options:
          model: qwen2.5:3b

    dashscope:
      api-key: ${AI_DASHSCOPE_API_KEY}
      chat:
        options:
          model: qwen-max

#spring事务管理日志
logging:
  level:
    org.springframework.jdbc.support.JdbcTransactionManager: debug

 配置ChatClient:

完整代码如下:

package com.hl.springdemo.config;

import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class ChatClientConfig {

    @Bean
    public ChatClient ollamaChatClient(@Qualifier("ollamaChatModel") OllamaChatModel ollamaChatModel) {
        return ChatClient.builder(ollamaChatModel).build();
    }

    @Bean
    public ChatClient dashscopeChatClient(@Qualifier("dashscopeChatModel")DashScopeChatModel dashscopeChatModel) {
        return ChatClient.builder(dashscopeChatModel).build();
    }
}

在controller中添加接口:


    @GetMapping("/chat2")
    public String chat2(@RequestParam(value = "question", defaultValue = "你是谁?") String question) {
        log.info("question: {}", question);
        String content = dashscopeChatClient.prompt()
                .user(question)
                .call()
                .content();
        return content;
    }

配置环境变量:

打开idea的运行配置,添加环境变量:AI_DASHSCOPE_API_KEY=你的api-key

接着运行访问localhost:8080/chat2?question=你是谁?即可!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤姆大聪明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值