- 博客(23)
- 收藏
- 关注
原创 Notion基础使用指南与模板导入方法(附周边工具推荐)
📝Notion新手入门指南(150字版) 本文介绍Notion基础使用方法:1)注册登录后,左侧为工作区/页面列表,中间编辑区支持拖拽模块;2)通过"Duplicate"按钮可复制他人分享的模板(如任务管理、学习笔记);3)推荐结合AI工具Dify实现内容智能处理,或用n8n/Zapier实现Notion与其他应用的自动化联动。新手可从每日计划、习惯追踪等免费模板开始体验,逐步打造个性化效率系统。 🔗核心操作:复制模板→修改内容→集成工具 🛠️周边推荐:Dify(AI处理)、n8n
2025-09-07 11:30:14
704
原创 YOLOv8 在 Intel Mac 上的 Anaconda 一键安装教程
通过本文的一键安装脚本 + 常见问题解决方案,你可以在Intel Mac上快速搭建 YOLOv8 环境,支持:✅ 终端推理✅ Notebook 可视化✅ 自定义训练与测试。
2025-09-06 18:12:42
319
原创 Mac Intel 芯片 Docker 一键部署 Neo4j 最新版本教程
本文介绍了如何在Mac Intel 芯片上通过Docker 一键部署 Neo4j 最新版本,并提供了:📝 一键管理脚本(启动/停止/重启/删除/状态)⚡ 数据持久化和端口配置方法🐍 Python 驱动示例代码这样你就可以快速上手 Neo4j,在本地构建自己的图数据库应用🚀。知识图谱、推荐系统、社交分析等。
2025-09-06 18:02:12
893
原创 YOLO 模型发展与应用场景推荐大全(含 YOLOv12 最新进展 + 系统配置要求)
YOLO(You Only Look Once)是一类主流目标检测算法,从 2016 年的 YOLOv1 发展至今,已经成为实时目标检测的事实标准。速度快:单次前向传播即可完成检测。精度高:不断优化 backbone、neck、head 结构。应用广:交通、安防、医疗、农业、工业等。历代发展:YOLOv3 → 跨入大规模工业应用YOLOv5 → 社区最流行版本,生态成熟YOLOv8 → 多任务(检测、分割、姿态)全能模型YOLOv11 → 小目标检测和推理速度表现优异。
2025-09-05 23:42:31
723
原创 YOLO 大模型应用场景推荐与配置要求全解
YOLO系列目标检测模型从v1发展至v12,具备端到端检测、轻量化部署和多任务拓展优势。根据应用场景推荐不同版本:自动驾驶/安防用v11/v12,工业质检/医疗用v8/v12,无人机用YOLO-Drone,零售/机器人用v8/v11。环境配置方面,Windows/Linux需NVIDIA显卡,Mac(M1/M2/M3)支持Metal加速,Intel芯片Mac需轻量模型或外接GPU。科研推荐v5/v8,工业应用选v11/v12,Linux+NVIDIA为最佳部署方案。
2025-09-05 23:38:15
232
原创 Mac Intel 芯片部署 YOLO(Docker 方式,支持离线打包与 Compose 管理)
本文详细介绍在MacIntel芯片上使用Docker部署YOLO的方法,内容包括:1)拉取官方镜像;2)镜像打包导出支持离线使用;3)提供一键脚本简化操作;4)使用Docker-Compose实现长期运行管理。文章还包含环境准备、镜像导入、测试运行等完整步骤,并针对常见问题(下载慢、CPU加速、数据挂载等)提供解决方案,帮助用户轻松实现YOLO在不同环境中的快速部署与管理。
2025-09-05 14:59:57
959
原创 DeepSeek-R1 蒸馏版模型离线安装与运行教程(Windows + D盘)
【摘要】本文详细介绍了如何在Windows系统的D盘环境下离线安装并运行DeepSeek-R1推理优化模型。主要内容包括:1)模型系列介绍(大模型版/蒸馏版/量化版);2)Ollama安装及路径配置方法;3)GGUF模型文件存放与Modelfile创建步骤;4)模型导入及交互式对话启动流程;5)常用模型管理命令。特别提供了百度网盘下载模板,方便用户获取DeepSeek-R1-Distill-Qwen-7B-Q4_K_M量化模型文件(需自行替换真实链接)。该方案适合网络不稳定或需要特定量化版本的用户,实现了完
2025-09-04 15:20:32
819
原创 DeepSeek-R1 模型全解析与本地安装运行指南(Windows+D盘)
本文全面解析国产DeepSeek-R1大模型并提供Windows安装指南。DeepSeek-R1分为三个版本:完全强化学习的Zero版、平衡性能的大模型版和轻量化蒸馏版,参数量从1.5B到671B不等。文章详细介绍了在Windows系统下将Ollama安装到D盘的方法,包括修改模型存储路径的关键命令。同时总结了Ollama的常用模型管理命令,如pull拉取模型、run运行模型、list查看模型等。推荐普通PC用户使用7B或14B版本,高配设备可尝试更大模型。通过简单命令即可实现本地部署,方便开发者体验这一强
2025-09-04 13:47:16
648
原创 Dify 平滑升级指南(源码拉取 + Docker 构建)
本文提供了Dify系统的平滑升级指南,适用于通过源码部署且使用Docker Compose的macOS用户。升级步骤包括:1)停止旧容器(保留数据卷);2)拉取最新源码;3)检查.env配置文件;4)构建最新镜像;5)启动服务。文章还提供了一键升级脚本,并强调注意事项:保留.env文件、不删除数据卷、建议提前备份。该方法能实现无数据丢失的平滑升级,脚本可提高升级效率。
2025-09-03 20:48:22
236
原创 Mac 下使用源码 + Docker 构建 YOLO(支持一键升级)
YOLO是一种实时目标检测算法,通过Docker部署可实现环境隔离与便捷升级。在Mac上(包括M系列芯片)使用步骤:1)安装Docker;2)拉取YOLO源码;3)编写包含Python环境和依赖的Dockerfile;4)构建镜像时指定平台架构;5)挂载源码运行容器。该方法支持通过git pull升级代码,保持环境干净且可复现,尤其适合需要源码管理的开发者。M系列芯片需添加--platform参数,虽无法GPU加速但保证了跨平台兼容性。
2025-09-03 20:42:01
660
原创 基于 n8n + DeepSeek 的自动化 CRM 数据分析与验证工作流
本文介绍了一套基于n8n和AI模型(DeepSeek)的CRM数据分析自动化工作流,实现"分析+质量评估"闭环。该工作流从潜在客户转化率、增销情况、坐席绩效等维度分析CRM数据,输出Markdown格式报告和JSON格式质量评估结果。系统通过DeepSeek模型自动生成报告并进行质量验证,确保分析结果的可靠性和可操作性。该方案具有全自动化、扩展性强、支持回溯迭代等优势,适用于客服、销售等多个业务场景,未来还将加入时间趋势分析等功能。
2025-07-31 19:22:38
126
原创 基于 n8n + DeepSeek 实现 PDF 智能摘要提取工作流(附工作流)
本文介绍如何利用n8n自动化平台和DeepSeek大模型构建PDF智能摘要工作流。该方案支持本地PDF上传,通过DeepSeek进行内容解析与摘要生成,最终输出结构化Markdown格式。工作流包含PDF文本提取、DeepSeek模型分析(按主题生成三段式摘要)、Markdown格式化等关键节点,适用于学术研究、商业报告等场景。文章详细说明了技术架构、工作流设计、提示词模板及部署建议,并提供了示例效果和工作流文件下载链接,帮助用户快速实现PDF高效阅读与信息提取。
2025-07-31 18:16:35
570
原创 n8n 实战教程:基于 Excel 文件自动计算年龄并过滤异常数据(附工作流)
本文演示了使用n8n自动化工具处理Excel数据的完整流程:从读取本地文件、解析数据、计算年龄、过滤异常值到生成新文件。工作流通过JavaScript代码节点实现年龄计算,利用过滤节点确保数据质量,最终将处理结果保存为新Excel文件。该方案适用于客户数据处理、HR系统管理等场景,展示了n8n在办公自动化中的高效应用。
2025-07-31 10:23:48
711
原创 本地部署 DeepSeek 大模型:Ollama + Cherry Studio 全流程教程(macOS 适配)
摘要: 本教程介绍在macOS上部署DeepSeek大模型的完整流程,使用Ollama作为本地运行引擎,搭配CherryStudio打造ChatGPT风格界面。从环境准备(需Homebrew)、Ollama安装/模型拉取(推荐deepseek-coder:8b),到CherryStudio的图形界面配置(设置API地址为localhost:11434),实现全本地化、数据私有的AI助手。教程包含不同设备配置的模型选择建议(如M1/M2 Mac推荐轻量版)、常见问题解决方案,并提供网盘备用下载链接。该系统支持
2025-07-29 16:21:30
1383
原创 Docker容器n8n中 read/write files from disk 无法读取容器内文件解决方案
《n8n文件读写Docker部署常见问题解决方案》摘要:针对n8n 1.90.2版本在Docker环境下文件读写失败问题,本文分析常见错误包括路径错误(ENOENT)、权限不足(EACCES)及节点误用问题。核心解决方案为:1)通过-v参数挂载宿主机目录到容器(如/files);2)使用新版Read/WriteFilesfromDisk节点操作文件;3)确保权限设置正确。提供可直接导入的示例工作流JSON,演示从CSV读取到结构化数据处理的全流程。特别强调已部署用户需重新挂载卷的正确操作方式,并附解决方案对
2025-07-28 11:24:35
848
原创 n8n 中运行外部 Python 文件并持久化虚拟环境安装第三方库的最佳实践
使用节点 + Docker 虚拟环境,我们解决了以下几个痛点:✅支持任意第三方库的安装与使用✅避免 n8n Code 节点沙盒的限制✅容器升级后依然保留虚拟环境和已装库✅本地开发文件挂载方便调试如果你在 n8n 中有类似的需求,不妨试试这个方法,它将大大增强 n8n 的数据处理和脚本执行能力。📌如果你想把 Python 脚本集成得更高级,还可以结合Webhook节点和参数传递机制,让 Python 真正成为你 n8n 自动化流程的一环!
2025-07-24 16:42:00
637
原创 智能 AI 编程助手 Cursor 安装与使用全攻略
Cursor是一款基于VSCode的AI编程编辑器,集成了GPT-4、Claude等主流大模型,支持代码补全、解释、重构等功能。文章详细介绍了Cursor的安装方法(官网下载、Homebrew、AppImage)、首次配置流程,以及代码解释、自动重构等核心功能。特别提供了接入本地大模型(如Ollama+LLaMA3)的进阶教程,保障代码隐私安全。作为VSCode生态兼容的AI编程工具,Cursor既能提升开发效率,又支持私有化部署,是开发者值得尝试的智能IDE解决方案。
2025-07-23 16:48:11
1159
原创 非量化模型(.safetensors)转换为 Ollama 支持的 GGUF 格式
本教程详细介绍了如何将Qwen2.5-VL-3B-Instruct的.safetensors模型转换为GGUF格式,以便在Ollama中使用。主要步骤包括:准备Python环境、获取模型文件、使用llama.cpp工具进行格式转换(需指定模型类型为qwen2.5-vl)、创建Ollama配置文件并部署。教程还提示了转换注意事项,如确保llama.cpp为最新版本,以及Ollama当前对多模态输入的限制。通过该教程,开发者可以顺利将这个多模态模型转换为轻量高效的GGUF格式,为后续部署应用奠定基础。
2025-07-23 14:44:12
396
原创 Linux下 Dify 集成 Ollama 报错:host.docker.internal 无法解析的解决方案
问题解决方式无法解析使用172.17.0.1或配置Ollama 模型路径错误设置环境变量服务无法访问检查端口是否暴露📌建议:部署在 Linux 上时尽量使用真实 IP 或桥接网络方式,避免依赖这种平台特有方案。📬 如果你在部署 Dify、Ollama、Docker 时遇到任何问题,欢迎留言交流!
2025-07-23 14:03:54
591
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人