自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1302)
  • 收藏
  • 关注

原创 一文讲清楚,AI、AGI、AIGC与AIGC、NLP、LLM,ChatGPT等概念

本文梳理了大模型(LLM)相关概念,帮助理解AI领域的热门术语。文章首先指出ChatGPT3.5的爆火带动了AI相关概念的普及,但各类术语如AI、AIGC、AGI等容易混淆。作者通过图示厘清概念关系:AI(人工智能)是基础概念;AIGC(AI生成内容)包括文本、图像等内容的自动生成;AGI(通用人工智能)则是具备人类智能水平的终极目标。文章强调当前AI仍处于特定任务阶段,距离实现真正的AGI还有很长的路要走。

2025-07-30 11:26:03 312

原创 一文搞懂LLM大模型!LLM从入门到精通万字长文

本文系统介绍了大语言模型(LLM)的基本概念及其发展历程,重点阐述了LLM模型的三大分类(语言、视觉和多模态)和四种主流开源模型(ChatGLM-6B、LLaMA、BLOOM、Baichuan-7B)。文章详细分析了各类模型的特点、优势及硬件要求,并梳理了LLM建立的完整流程,包括预训练、微调等关键技术。此外,还深入探讨了Prompt-Tuning、Prefix-Tuning、LoRA等前沿优化方法及其应用场景,为读者提供了从基础理论到实践应用的全面指导。

2025-07-30 11:25:19 176

原创 阿里Qwen3 全部情报汇总,本地部署指南,性能全面超越 DeepSeek R1

开源 8 款模型:6 款 Dense 模型 +2 款 MoE 模型8 个不同尺寸的模型,照顾到了所有场景:6 款 Dense 模型:(MoE, 总大小 235B, 激活参数 22B, 上下文 128K)(MoE, 总大小 30B, 激活参数 3B, 上下文 128K)混合思维模式,搭载了 thinking 开关,可以直接手动控制要不要开启 thinking最大的这个在强劲性能的基础上,部署成本仅为 Deepseek R1 的 35%。

2025-07-29 10:30:00 360

原创 Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人

阿里巴巴发布Qwen2系列开源大模型,包含0.5B至72B五种规格。其中Qwen2-72B性能超越Llama3-70B,Qwen2-7B在代码和中文理解上优于同类模型。文章详细介绍了Qwen2-7B-Instruct的部署流程:下载GGUF量化模型文件,安装Python依赖包,通过llama_cpp.server启动模型服务(支持最大20480 tokens上下文),并提供了命令行对话客户端代码示例。模型许可方面,72B版本沿用Qianwen协议,其余采用Apache 2.0。部署完成后可通过API或扩展W

2025-07-29 10:30:00 1121

原创 【AI大模型】不知道部署哪个版本?一文看懂Qwen3本地部署的配置要求,收藏这一篇就够了!!

本文详细介绍了Qwen3系列大模型的本地部署要点,重点分析了影响显存占用的三大关键因素:模型参数规模、量化权重和KV缓存技术。文章指出,Qwen3系列包含8种不同尺寸的模型(6个密集模型+2个MoE模型),其中MoE模型通过稀疏激活策略在有限计算资源下获得更好性能。量化技术可显著降低显存需求,常用的Q4_K_M量化方式适合消费级显卡部署。KV缓存技术虽能提升推理效率,但其显存占用会随上下文长度线性增长。文章还提供了详细的显存占用计算公式和不同显卡的适配推荐,建议24G显存显卡优先选择Qwen3-30B-A3

2025-07-28 11:30:57 735

原创 Dify+Ollama+Qwen3案例实战:10分钟实现AI业务数据查询

阿里巴巴发布新一代开源大模型Qwen3,性能全面提升 Qwen3系列包含MoE和Dense架构,覆盖0.6B-235B参数规模,旗舰模型Qwen3-235B性能媲美顶级商用模型但激活参数仅22B,显著降低部署成本。创新性地支持双思考模式(/think /no-think)切换,优化不同场景响应速度,并增强多语言(119种)和长文本(32K)处理能力。 通过Ollama工具可快速部署,4张H20显卡即可运行235B模型。实战演示基于Dify平台构建智能问数系统:通过知识库检索表结构→Qwen3-8B生成SQL

2025-07-28 11:29:06 583

原创 最强开源Qwen2.5:本地部署 Ollma/vLLM 实测对比,邀你围观体验

Qwen2.5 72B模型性能超越Llama3.1 405B,成为当前最强开源大模型。文章实测了Ollama和vLLM两种本地部署方案,重点介绍了Ollama部署Qwen2.5系列模型(7B/14B/32B)的具体步骤和显存占用情况(7B需6G显存,32B需24G显存)。Ollama支持多GPU自动分配,并展示如何接入OneAPI实现OpenAI格式兼容。文章为开发者提供了实用的部署指南和资源参考。

2025-07-26 10:45:00 888

原创 本地部署大模型?Ollama 部署和实战,看这篇就够了

文章摘要:Ollama本地大模型部署指南 本文介绍了如何在本地部署和运行大模型工具Ollama,支持Mac、Windows和Linux系统。Linux系统推荐裸机或Docker部署,裸机部署通过脚本安装并配置服务,支持修改默认参数如监听地址和模型存储路径;Docker部署则更简单,支持CPU/GPU环境。文章还列举了Ollama常用命令,如模型下载、运行和管理等,帮助用户快速上手本地大模型服务。

2025-07-26 10:15:00 588

原创 国产开源代码模型之光:CodeGeeX4 - ALL - 9B本地部署体验实战大全

CodeGeeX4-ALL-9B是一款集代码补全、生成、问答等功能于一体的开源代码大模型,在多项基准测试中表现优异。文章介绍了其特点与优势,包括卓越的性能、强大的泛化能力和高效的上下文理解,并展示了其在原型开发、代码优化等场景的应用。同时提供了本地IDE插件安装使用指南和基于Ollama的模型本地部署方法,为开发者提供了高效便捷的代码生成解决方案。

2025-07-25 10:57:34 616

原创 【GLM-4部署实战】GLM-4-9B-Chat模型本地部署实践指南

本文介绍了GLM-4-9B-Chat模型的本地部署实践指南。GLM-4-9B-Chat是智谱AI推出的开源大模型,在语义理解、数学计算、逻辑推理等方面表现优异,支持多轮对话、128K长文本推理和26种语言处理。文章详细讲解了从环境准备到模型部署的全流程,包括AutoDL平台环境配置、GitHub源码下载、依赖安装(如PyTorch、Transformers等核心库)以及模型文件下载。通过本地推理测试和OpenAI API服务发布测试,验证了模型的文本生成能力和API服务可用性。该指南为开发者提供了完整的GL

2025-07-24 10:14:55 983

原创 【全球首个开源AI数字人】DUIX数字人-打造你的AI伴侣!

本文介绍了DUIX数字人技术的背景、特点与应用。作为硅基智能开发的开源数字人交互平台,DUIX集成了语音识别、合成、大模型等AI技术,具备跨平台兼容性、低算力需求、高帧率(50帧/秒)等优势。其开源特性促进技术透明与创新,适用于客服、教育、娱乐等场景。文章详细阐述了DUIX的技术架构、安全合规性,并提供了安卓/iOS SDK集成教程,为开发者提供实践指导。通过展示效果与部署方案,突显DUIX在实时交互和定制化方面的价值,展现了开源数字人技术的发展潜力。

2025-07-24 10:12:59 957

原创 本地问答系统升级:本地RAG+网络搜索(已开源)

DeepSeek-R1+本地化RAG项目新增联网搜索功能,通过集成SerpAPI实现本地文档检索与网络搜索的混合问答。文章介绍了三种触发联网搜索的条件:时间敏感关键词检测、RAG置信度阈值和用户意图识别。技术方案采用双通道处理架构,对网络数据进行去重、结构化处理,并引入可信度评估机制。项目已在GitHub开源,支持每月100次免费查询,适用于需要实时信息的场景。作者还提出了性能优化方向,包括微服务架构、混合检索策略和缓存机制,以提升系统响应速度。该项目为开发者提供了构建私有智能文档助手的完整解决方案。

2025-07-23 11:28:38 651

原创 无需联网!DeepSeek-R1+本地化RAG,打造私有智能文档助手

摘要: 本文介绍了一种基于DeepSeek-R1 7B大模型的本地RAG(检索增强生成)问答系统,适用于医疗、金融、法律等对数据隐私要求高的场景。系统采用全本地化部署,结合ChromaDB向量数据库和Gradio交互界面,支持PDF文档解析、语义检索及流式问答。 核心功能: 数据安全:敏感文档无需上传云端 高效检索:基于向量数据库实现毫秒级响应 领域适配:可定制专业领域知识库 离线可用:无需互联网连接 应用场景示例: 法律:自动关联判例法条,生成诉状初稿 制造业:技术文档智能问答与故障诊断 金融:企业风控数

2025-07-23 11:27:10 915

原创 2025大模型学习路线(超全面!超详细!)收藏这一篇就够了!

大模型学习路线与核心概念 随着深度学习技术的发展,大模型以其数亿至数十亿参数的庞大规模,在自然语言处理、计算机视觉等领域展现出卓越性能。学习大模型需要掌握深度学习基础(神经网络原理、激活函数等)、Python编程技能及TensorFlow/PyTorch框架应用,同时需具备特定领域知识(如NLP或CV)和持续学习最新研究成果的能力。大模型具有深层网络结构、强大泛化能力等特点,典型代表包括BERT、GPT-3等,其发展依赖于海量数据和GPU/TPU等计算资源的支持。值得注意的是,多模态大模型通过融合文本、图像

2025-07-22 14:37:41 806

原创 大模型学习路线入门到精通,非常详细收藏我这一篇就够了!

大模型技术学习路径:从基础到实践 大模型技术的学习分为使用工具和制造工具两个方向。本文聚焦于制造大模型所需的技术基础,包括六个关键维度:1)理论基础(人工智能概念、神经网络原理等);2)编程基础(以Python为主);3)深度学习框架(如TensorFlow/PyTorch);4)特定领域知识;5)实践项目经验;6)算法基础。其中,理论基础指导技术方向,编程能力是工程实现基础,开源框架能提升开发效率。建议学习者先掌握核心理论,再通过编程实践加深理解,最终结合领域知识进行创新应用开发。

2025-07-22 11:46:57 611

原创 CogVLM多模态大模型训练代码详细教程(基于vscode调试与训练)

本文介绍了在RTX4090显卡上使用vscode调试训练CogVLM多模态大模型的过程。首先解决了环境安装中的apex兼容问题和en_core_web_sm模型下载问题,重点讲解了如何配置launch.json文件实现deepspeed训练调试。文章详细分析了训练源码的关键部分,包括权重处理、数据加载、参数修改等核心内容,并展示了训练结果。作者分享了在单卡环境下调试大模型的经验,为在有限显存条件下进行多模态大模型训练提供了实用参考。

2025-07-21 11:55:04 519

原创 一文搞懂⼤模型的训练:完整的代码演示

大模型训练分为三个阶段:预训练阶段通过海量语料学习语言统计规律;监督微调(SFT)阶段专注于特定领域知识学习;基于人类反馈的强化学习(RLHF)阶段通过人类评分优化回答质量。当前主流模型分为BERT(擅长自然语言理解)和GPT(生成式模型)两类方向。大模型本质上是通过概率计算进行文本生成,并非真正理解语义。随着AI技术发展,掌握大模型技能将成为重要竞争优势。文中还提供了使用OpenAI API进行文本生成的代码示例,展示了GPT模型的基本应用方式。

2025-07-21 11:41:23 745

原创 一文讲完17种提示词工程(prompt engineering)方法

AI提示工程:17种方法激发模型潜力 在一次校友年会上,作者通过AI生成的报告意外引发关注,这促使他思考如何让AI更"懂"人类。文章介绍了提示工程的核心方法,包括: 零样本提示:直接指示模型完成新任务 少样本提示:通过示例引导模型理解任务模式 链式思考(COT)提示:引导模型逐步推理复杂问题 这些技巧通过优化提示词设计,能显著提升AI模型的输出质量,帮助用户获取超出预期的结果。文章后续将详细介绍17种提示词规则方法,帮助读者掌握与AI高效交互的技巧。

2025-07-18 11:20:59 955

原创 【LLM大模型】prompt 工程(Prompt Engineering)

提示工程(Prompt Engineering)是通过优化指令来引导语言模型生成更精准的文本输出。有效的Prompt包含任务描述、上下文、输出格式等要素。以邮寄地址识别机器人为例,初始Prompt仅定义角色和功能,输出结果较随意;优化后加入JSON格式要求,输出更结构化;但仍需限制无关问题的响应。这表明Prompt设计需持续迭代,结合具体需求调整要素,才能提升模型输出的质量和相关性。

2025-07-18 10:45:37 956

原创 如何用文本向量构建语义搜索索引:一份实战指南

本文探讨了语义搜索相较于传统关键词匹配的优势及其实现方式。传统搜索依赖关键词匹配,存在无法理解语义、对语言变体不敏感等问题。语义搜索通过文本嵌入技术将文本转换为向量,利用向量相似度判断语义相关性,显著提升搜索准确率。文章介绍了文本嵌入的核心概念、常见模型(如OpenAI、Hugging Face等),并说明向量化表示如何实现语义匹配。这种方法能更精准地理解用户意图,适用于问答系统等场景,是提升搜索效率的有效方案。

2025-07-17 15:09:53 873

原创 Dify+DeepSeek-R1: 我的超强AI工作流,详细的部署与使用实录

AI技术圈近期迎来两大亮点:DeepSeek推出的R1和Janus-Pro模型表现惊艳,而开源平台Dify的star数突破6万。本文分享了如何搭建这一AI开发组合:首先通过Docker部署Dify平台,完成环境配置和服务检查;随后安装Ollama并下载DeepSeek-R1模型(7B或14B版本);最后进行系统联调,在Dify控制台中配置本地模型,实现AI应用快速开发。这套方案为开发者提供了从模型部署到应用搭建的一站式解决方案。

2025-07-16 15:09:03 1007

原创 【大模型科普】大模型:人工智能的前沿(一文读懂大模型)

本文将深入剖析大模型的核心概念、原理特点以及丰富多元的应用实践案例,旨在让大家全面了解大模型这一前沿技术,明晰其在当下及未来发展中的重要地位与深远影响 ,共同探索如何借助大模型的力量推动社会各项事业...

2025-07-16 11:40:46 1128

原创 【AI大模型】DeepSeek + Kimi 高效制作PPT实战详解

摘要:本文介绍利用Deepseek和Kimi两款AI工具快速制作PPT的方法。只需10分钟5个步骤:1)在Deepseek输入PPT主题生成Markdown格式内容;2)复制内容到Kimi的PPT助手;3)选择模板并生成PPT;4)下载后进行微调。该方法显著提升工作效率,适合需要快速制作PPT的用户。文末还提供AI大模型学习资料包,包含学习路线、商业化方案、视频教程等资源,可免费领取。(149字)

2025-07-15 10:39:47 879

原创 AI大模型赋能百业+应用场景

在人工智能(AI)的发展历程中,大模型无疑是一个重要的里程碑。大模型拥有强大的自然语言和多模态信息处理能力,可以应对不同语义颗粒度下的任务,进行复杂的逻辑推理,还具有超强的迁移学习和少样本学习能力,可以快速掌握新的任务,实现对不同领域、不同数据模式的适配,大模型这些特点不仅提升了AI的处理能力,也极大地拓宽了AI的应用领域,较容易的赋能其他行业,提升行业效率。下面我们将探讨一下AI大模型在各行业的应用场景,帮助大家更好地了解大模型应用。

2025-07-15 10:19:59 238

原创 一文告诉你:DeepSeek R1 和 V3 两者模型的区别有哪些?

DeepSeek R1与V3是深度求索推出的两款大模型,均基于混合专家架构(MoE),但定位不同。V3是通用NLP模型,支持多模态处理,训练成本低;R1专攻复杂推理任务,强化数学、代码生成能力,采用强化学习优化性能。性能上,R1在数学和逻辑测试中超越V3,接近GPT-4o水平。V3强调综合适用性,R1则专注推理优化,适合不同应用场景。

2025-07-12 14:49:40 324

原创 RAG实战案例:如何基于 LangChain 实现智能检索生成系统

在人工智能领域,如何有效结合大型语言模型(LLM)的常识性知识与特定的专有数据,一直是业界探索的热点。微调(Fine-tuning)与检索增强生成(Retrieval-Augmented Generation,简称RAG)两种方法各有千秋,且都对此问题有着不可忽视的贡献。本文将重点介绍RAG的理论基础,并展示如何利用LangChain、GPT大模型以及Weaviate矢量数据库搭建一个简易的RAG流程。

2025-07-12 11:30:00 1689

原创 构建本地RAG知识库(下):使用RAG构建知识库

本文介绍了如何利用LangChain框架结合RAG(检索增强生成)技术构建对话应用。首先回顾了RAG的三个核心环节:索引(包括数据加载、分割、向量化和存储)、检索(基于语义相似度召回相关内容)和生成(结合上下文生成回复)。接着详细演示了使用LangChain的具体实现步骤:通过文本加载器导入数据,采用递归字符分割器处理文本,并说明如何将文档转换为向量存入数据库。该方案通过外部知识库扩展大模型的知识边界,为构建更智能的对话系统提供了实践路径。

2025-07-11 15:25:52 389

原创 读懂RAG这一篇就够了,万字详述RAG的5步流程和12个优化策略

RAG(检索增强生成)技术为生成式AI模型提供了外部知识接入方案,以解决幻觉、知识更新滞后等局限性。其核心流程包括:知识文档准备(多格式转换与分块处理)、嵌入模型(文本向量化)、向量数据库存储、查询检索(语义匹配)及生成回答。优化策略涉及数据清洗(格式标准化、实体解析)、智能分块(固定大小、递归分块等)和嵌入模型选择(如Word2Vec、BERT)。相比微调方案,RAG具有实时知识更新、低成本等优势,广泛应用于企业知识问答等场景。该技术通过检索外部知识增强生成结果,显著提升了专业领域回答的准确性和时效性。

2025-07-11 14:37:32 354

原创 AI大模型低成本快速定制秘诀:RAG和向量数据库

本文介绍了大模型时代下向量数据库和RAG(检索增强生成)技术的重要应用。在当前AI领域,向量数据库因其高效处理高维数据的能力,成为降低大模型定制成本的关键技术。RAG结合向量搜索和大模型生成,有效解决了数据实时性、隐私性等问题,提升模型输出质量。文章还提到机器之心即将举办的"大模型时代的向量数据库"技术论坛,将聚焦技术实践、产业落地和未来趋势,邀请行业专家分享前沿见解。论坛将探讨如何发挥技术优势、突破瓶颈,助力企业和个人把握AI发展机遇。

2025-07-11 14:05:10 926

原创 AI智慧医疗:探索机器学习在医疗保健中的应用与进展

AI智慧医疗正在革新医疗保健行业,机器学习技术在疾病预测、诊疗效率提升、遗传分析等方面展现出巨大潜力。文章详细探讨了AI在心脏病预测、智能排班、肺炎诊断等场景的应用案例,同时分析了虚拟助手、慢病管理等创新方向。尽管面临数据隐私等伦理挑战,AI与医疗的深度融合将优化资源分配,提高服务质量,为全民健康带来新机遇。

2025-07-08 11:54:45 589

原创 DeepSeek赋能:3天拿下华为云鸿蒙开发者微认证,开启智能开发新旅程

在万物互联的时代,外加上近几年的互联网行业的大环境多变因素的影响,开发者面临着前所未有的机遇和挑战。一方面,HarmonyOS的分布式技术为开发者提供了广阔的创新空间,开发者可以通过开发跨设备的应用和服务,...

2025-07-08 10:52:51 861

原创 DeepSeek R1 使用指南:架构、训练、本地部署

DeepSeek 在最新论文中详细介绍了他们通过强化学习(RL)提升大语言模型(LLM)推理能力的创新方法——DeepSeek-R1。这项研究标志着一个重要的进展,即如何通过纯强化学习提升 LLM 解决复杂问题的能力,而不依赖于大量的监督微调。

2025-07-07 17:18:11 1177

原创 【AIGC】大模型在金融行业的应用场景和落地路径

ChatGPT 强大的自然语言处理和生成能力,为金融行业带来了更高效、更准确的信息处理和决策分析能力,同时为金融机构提供了更好的客户服务和风险管理能力,它在金融领域有着广泛的应用潜力,包括客户服务和支持、财务...

2025-07-04 11:55:58 994

原创 作为产品经理,如何用大模型给我们赋能?非常详细,收藏我这篇就够了

产品经理转型大模型领域可带来多重优势:技术理解深化、创新能力提升、用户体验优化、决策支持增强,以及个性化服务实现。需掌握机器学习基础、数据处理、模型评估等核心技能,同时关注用户体验设计、商业智能和伦理合规。学习路径包括技术理解、应用开发、持续学习三阶段,配套104G学习资源包含路线图、商业化方案、视频教程及200本专业书籍。转型后将显著提升个人竞争力,助力产品创新与行业发展。(149字)

2025-07-04 11:07:09 513

原创 AI大模型赋能中医药产业发展分析

以大模型为代表的人工智能技术正在加速改变世界,成为引领新一轮科技革命和产业变革的关键驱动。近年来,在数据、算法和算力等关键要素的快速迭代下,AI大模型迅速发展,应用领域不断拓宽,正在与中医诊疗、中药研发等深度融合,带来了众多创新与突破。中医药模型如同一位博学的古代名医,穿越时空,与现代科技携手,共同守护着人类的健康。

2025-07-03 14:41:52 718

原创 vLLM + Open-WebUI 本地私有化部署 DeepSeek-R1-Distill-Qwen-32B 方案

摘要 本文详细介绍了基于vLLM框架部署DeepSeek-R1-Distill-Qwen-32B大模型的过程。该模型是DeepSeek-R1的32B参数蒸馏版本,在多项测试中表现优异。部署过程包括:通过Modelscope下载模型、配置vLLM服务启动参数(如GPU分配、内存优化等),以及验证API接口。随后介绍了Open-WebUI的安装配置,展示了如何将前端界面与vLLM后端服务连接。最后通过对话测试验证了模型的实际效果。文章还提供了AI大模型学习资料获取方式。整个部署方案兼顾了性能和资源效率,适合本地

2025-07-03 11:35:46 588

原创 小红书爆量新逻辑:AI流量智能体+DeepSeek+Coze,一天干出100+爆款笔记!

摘要: 本文详细介绍了如何利用DeepSeek和Coze构建AI智能体,实现小红书爆款书单笔记的批量生成。通过AI分析市场定位、生成内容框架,并结合固定的爆款模板,单日可产出100+条高质量内容。整个流程包括:用户输入关键词→生成书单内容→包装笔记结构→输出视频脚本→整理发布素材包。关键点在于垂直细分的关键词选择、情绪化的金句设计和统一的风格模板。这套方法不仅能应用于书单号,还可扩展至情感类、职场类等内容矩阵,实现高效的内容生产和变现。文末还提供了AI大模型学习资料,帮助读者掌握相关技术。

2025-07-02 11:35:06 923

原创 【保姆级教程】零基础也能搭建Agent!10分钟打造你的第一个AI智能体,效率飙升10倍就靠它了!

【保姆级教程】零基础也能搭建Agent!10分钟打造你的第一个AI智能体,效率飙升10倍就靠它了!

2025-07-02 11:33:33 655

原创 入门大模型应用开发的最佳选择,RAG入门与实战(含福利)

RAG(检索增强生成)技术自2020年由Facebook AI推出后迅速走红,成为解决大模型"幻觉"问题的关键方案。该技术通过检索外部知识库增强模型回答准确性,已被Google、AWS等巨头广泛应用。文章推荐《大模型应用开发:RAG入门与实战》一书,系统讲解RAG三大核心组件(检索器、生成器、排序器)及PyTorch实现,涵盖从基础理论到PDF阅读器等实战项目。书中通过9章内容循序渐进,结合可视化工具和案例演示,适合不同基础的学习者掌握这一前沿技术。文末还提供AI大模型学习资料包,包含路

2025-07-01 11:19:07 813

原创 一文搞懂基于大模型快速搭建本地RAG知识库应用实践

摘要:RAG(检索增强生成)技术为企业知识库提供创新解决方案,通过检索外部知识增强大模型回答的准确性和可靠性。其核心流程包括文档预处理、向量索引构建、语义检索和提示词生成三步骤,有效减少大模型幻觉问题。RAG技术发展经历了朴素检索、进阶优化和智能体集成三个阶段,当前可结合动态API调用实现复杂场景应用。企业实施需关注文档标准化、向量模型选择、检索参数调优等关键环节,适用于合同分析、研报解读等专业场景,为数据孤岛提供低成本智能化方案。(149字)

2025-07-01 10:35:50 823

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除