一文搞懂⼤模型的训练:完整的代码演示

大模型训练整体上分为三个阶段:预训练、SFT(监督微调)以及RLHF(基于⼈类反馈的强化学习)

img

预训练(Pre-training )

​ 预训练的过程类似于从婴⼉成⻓为中学⽣的阶段,在这个阶段我们会学习各种各样的知识,我们的语⾔习惯、知识体系等重要部分都会形成;对于⼤模型来说,在这个阶段它会学习各种不同种类的语料,学习到语⾔的统计规律和⼀般知识

监督微调(SFT,Supervised Fine Tuning )

​ SFT的过程类似于从中学⽣成⻓为⼤学⽣的阶段,在这个阶段我们会学习到专业知识,⽐如⾦融、法律等领域,我们的头脑会更专注于特定领域。对于⼤模型来说,在这个阶段它可以学习各种⼈类的对话语料,甚⾄是⾮常专业的垂直领域知识,在监督微调过程之后,它可以按照⼈类的意图去回答专业领域的问题

基于⼈类反馈的强化学习(RLHF,Reinforcement Learningfrom Human Feedback )

​ RLHF的过程类似于从⼤学⽣步⼊职场的阶段,在这个阶段我们会开始进⾏⼯作,但是我们的⼯作可能会受到领导和客户的表扬,也有可能会受到批评,我们会根据反馈调整⾃⼰的⼯作⽅法,争取在职场获得更多的正⾯反馈。对于⼤模型来说,在这个阶段它会针对同⼀问题进⾏多次回答,⼈类会对这些回答打分,⼤模型会在此阶段学习到如何输出分数最⾼的回答,使得回答更符合⼈类的偏好

⼤模型是如何⽣成内容的?

​ 简单来说就是靠"猜"!虽然⾮常不可思议,但事实就是这样,现阶段所有的 NLP 任务,都不意味着机器真正理解这个世界,它只是在玩⽂字游戏,进⾏⼀次⼜⼀次的概率解谜,本质上和我们玩报纸上的填字游戏是⼀个逻辑。只是我们靠知识和智慧,AI 靠概率计算。

img

基于LLM演进出最主流的两个⽅向:BERT和GPT

​ 其中 BERT 是之前最流⾏的⽅向,⼏乎统治了所有 NLP 领域,并在⾃然语⾔理解类任务中发挥出⾊(例如⽂本分类、情感倾向判断等)

​ ⽽GPT ⽅向则较为薄弱,事实上在 GPT3.0 发布前,GPT ⽅向⼀直是弱于 BERT的(GPT3.0 是 ChatGPT 背后模型 GPT3.5 的前身)

GPT和BERT的区别?

img

下⾯⽤程序演示「⽣成下⼀个字」。你可以⾃⼰修改 prompt 试试。还可以使⽤相同的 prompt 运⾏多次

安装 OpenAI Python 库

pip install openai -i https://pypi.tuna.tsinghua.edu.cn/simple/

然后执行下面的代码

# 查看openai api支持的基座模型
from openai import OpenAI
from dotenv import load_dotenv
load_dotenv()  # 从我们的env文件中加载出对应的环境变量
import os
os.environ["http_proxy"] = "http://127.0.0.1:1083"
os.environ["https_proxy"] = "http://127.0.0.1:1083"

client = OpenAI()
prompt = '今天天气真'

def get_completion(prompt, model="gpt-4o-mini"):  
  messages = [{"role": "user", "content": prompt}]   
  response = client.chat.completions.create( 
         model=model,        
         messages=messages,        
         max_tokens=20    
)  
  # print(response)   
   return response.choices[0].message.content
   print(get_completion(prompt))

输出内容

img

零基础入门AI大模型

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

  • List item
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值