逻辑回归算法

一、引言

逻辑回归(Logistic Regression)是一种用于解决二分类问题的统计学习方法。它通过对数据进行建模,预测因变量(通常为二元分类)与自变量之间的关系。虽然名为“回归”,但逻辑回归实际上是一种分类算法,它使用了Sigmoid函数将线性回归的输出值映射到0和1之间,从而表示属于某个类别的概率。

二、逻辑回归原理

2.1 逻辑函数(Sigmoid Function)

逻辑回归的模型是基于线性回归的,但不同于线性回归直接输出预测值,逻辑回归使用Sigmoid函数将线性回归的输出值转化为一个概率值。Sigmoid函数表达式如下:

                                ​​​​​​​        ​​​​​​​        ​​​​​​​        \sigma(z) = \frac{1}{1 + e^{-z}}

其中,z=θTx 是线性回归的预测值,θ 是参数向量,x 是输入特征向量。

通过Sigmoid函数,逻辑回归的输出值被压缩在0到1之间,可以解释为属于正类的概率。当输出值大于0.5时,通常认为该样本属于正类;反之,则认为属于负类。

2.2 损失函数(Loss Function)

逻辑回归的损失函数通常使用交叉熵损失(Cross Entropy Loss),其表达式如下:

L = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]​​​​​​​

其中,m 是样本数量,y(i) 是第 i 个样本的真实标签(0或1),hθ​(x(i)) 是逻辑回归模型对第 i 个样本的预测概率。

2.3 参数优化(Parameter Optimization)

为了找到使损失函数最小的参数 θ,我们可以使用梯度下降法(Gradient Descent)来迭代更新参数。梯度下降法的迭代公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值