【题目描述】
菲波那契数列是指这样的数列: 数列的第一个和第二个数都为1,接下来每个数都等于前面2个数之和。
给出一个正整数a,要求菲波那契数列中第a个数对1000取模的结果是多少。
【输入】
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数a(1≤a≤1000000)。
【输出】
n行,每行输出对应一个输入。输出应是一个正整数,为菲波那契数列中第a个数对1000取模得到的结果。
代码解答
#include<iostream>
using namespace std;
int main() {
int a = 1, b = 1;
int n; cin >> n;
while (n--) {
int m; cin >> m;
a = 1, b = 1;
int c = 1;
for (int i = 3; i <= m; i++) {
c = a % 1000 + b % 1000;
c %= 1000;
a = b;
b = c;
}
cout << c << endl;
}
return 0;
}
优化解法:
递推:适用于全局的规律,每一项都可以由前面几项计算而出
* 递推的两要素
* 边界:递推的起点
* 递推关系:
菲波那契数列边界:第一项f[1]=1 第二项f[2]=1
菲波那契数列递推关系:f[i]=f[i-1]+f[i-2]
#include<iostream>
using namespace std;
const int N = 1e6 + 10;
int f[N];
int main() {
f[1] = 1; f[2] = 1;
for (int i = 3; i <= 1e6; i++) {
f[i] = f[i - 1] % 1000 + f[i - 2] % 1000;
f[i] %= 1000;
}
int n; cin >> n;
while (n--) {
int x; cin >> x;
cout << f[x] << endl;
}
return 0;
}