第一轮提问:传统电商场景下的高并发订单系统
面试官:小曾,我们来看一个电商高并发订单场景。假设某电商平台秒杀活动期间,订单量激增至10万QPS,你会如何设计订单系统以保障系统稳定性和数据一致性?
小曾:呃...我会用Spring Boot构建系统,数据库用MySQL加Redis缓存。订单表用分库分表,消息队列用Kafka异步处理...具体分表策略和Kafka参数调优就不细说了。
面试官:不错,提到分库分表和消息队列,能展开说说Redis如何帮助高并发场景吗?
小曾:Redis可以缓存热点商品信息,减少数据库压力。还有分布式锁用Redis实现...啊对了,Redis集群部署方案得根据业务规模调整。
面试官:很好,继续。如果用户下单后5秒内库存超卖,如何实现订单撤销?
小曾:这...可以用事务+回滚?或者消息队列确认机制?不过具体代码实现没细研究过。
面试官:考虑得不错。最后,如果系统出现雪崩,你会优先保障哪个模块?
小曾:肯定是订单核心模块啊,不能让用户一直等待...但具体降级策略得结合业务优先级定。
第二轮提问:内容社区UGC系统的技术选型
面试官:假设你要重构一个百万级日活的内容社区UGC系统,你会选择哪些技术栈?
小曾:Spring Boot+Vue前端,数据库用MongoDB存储非结构化数据,缓存用Redis...消息队列处理审核任务?
面试官:MongoDB适合存储UGC内容?能解释为什么?
小曾:嗯...它的文档模型灵活,适合存储富文本数据...但不知道是否支持复杂全文检索。
面试官:社区系统需要做什么类型的全文检索?
小曾:用户搜索功能?这得用Elasticsearch吧...不过集群搭建太复杂了。
面试官:那如果用户上传图片,你会怎么处理存储和检索?
小曾:图片存OSS,检索可能用Elasticsearch的图像分析插件?但具体没测试过。
面试官:最后,如果需要实时推荐内容,你会用哪种架构?
小曾:可以用消息队列触发推荐服务?或者Spring WebFlux做流式处理?不过微服务拆分方案得仔细规划。
第三轮提问:AI大模型驱动的智能客服系统
面试官:现在很多大厂都在做AIGC客服,假设你要设计一个基于Spring AI的智能客服系统,你会如何构建?
小曾:用Spring AI接入OpenAI API?然后搭建检索增强生成RAG架构?但不知道如何处理AI幻觉问题...
面试官:企业文档问答场景,你会怎么设计知识库构建方案?
小曾:用Elasticsearch索引企业文档?然后通过语义检索匹配用户问题...但不知道如何优化召回率。
面试官:如果用户连续提问,如何维护会话上下文?
小曾:用Redis存储会话状态?但不知道如何处理大量并发会话...
面试官:最后,智能客服系统如何与后台工单系统对接?
小曾:用REST API调用工单系统?但不知道如何保证响应时效性。
面试官:(叹气)好了,今天就到这里。你回去等通知吧。
答案解析:
-
高并发订单系统
- 技术点:Spring Boot分布式事务(TCC或Saga模式)、Redis分布式锁、Kafka异步化、分库分表(ShardingSphere或MyCAT)、数据库读写分离(ProxySQL)、服务熔断(Resilience4j)
- 业务场景:电商秒杀场景下,通过消息队列解耦下单和库存扣减,用Redis缓存热点数据,分库分表提升数据库吞吐量。
-
UGC社区系统
- 技术点:MongoDB+Elasticsearch全文检索、OSS对象存储、消息队列(RabbitMQ处理审核任务)、Spring WebFlux响应式编程、分布式缓存(Redis Cluster)
- 业务场景:社区系统需要支持毫秒级搜索和富文本存储,通过微服务拆分实现各模块弹性伸缩。
-
AI智能客服系统
- 技术点:Spring AI(OpenAI API集成)、RAG架构(Milvus向量数据库+检索增强)、会话记忆(Redis+WebSocket)、自然语言语义搜索(Sentence-BERT模型)
- 业务场景:企业客服系统需支持多轮对话和文档检索,通过向量化技术实现精准问答,用AI幻觉检测机制提升回复质量。
小白学习要点:
- 传统Java栈需掌握Spring Boot全家桶+数据库优化+消息队列
- AI栈重点学习Spring AI框架、向量数据库(Milvus)和RAG架构
- 大厂面试更注重场景设计能力,建议多练习业务案例技术拆解