跳跃残差模块(Skip Residual Module) 是 DemoFusion 框架中用于图像去噪和细节保留的核心组件。该模块通过引入跳跃连接(skip connections)和残差学习(residual learning),在图像去噪过程中有效地保留了图像的全局结构和细节信息,从而提升了生成图像的质量和模型的训练效率。
1. 跳跃残差模块概述
跳跃残差模块 的主要功能是在去噪网络的多个层次之间传递信息,以保留图像的全局结构和细节信息。该模块通过以下方式实现这一目标:
1.跳跃连接(Skip Connections):
- 将前一个去噪步骤的特征图直接传递到当前去噪步骤。
- 可以跨越多个层,甚至跨越不同分辨率的层。
2.残差学习(Residual Learning):
- 学习输入图像与目标图像之间的残差,而不是直接学习目标图像本身。
- 残差学习可以减轻模型的训练难度,提高模型的训练效率和性能。
3.特征融合(Feature Fusion):
- 将跳跃连接传递过来的特征图与当前去噪步骤的特征图进行融合。
- 融合策略可以采用加权平均或注意力机制。
4.残差块(Resi