DemoFusion 技术浅析(四):跳跃残差

跳跃残差模块(Skip Residual Module) 是 DemoFusion 框架中用于图像去噪和细节保留的核心组件。该模块通过引入跳跃连接(skip connections)残差学习(residual learning),在图像去噪过程中有效地保留了图像的全局结构和细节信息,从而提升了生成图像的质量和模型的训练效率。


1. 跳跃残差模块概述

跳跃残差模块 的主要功能是在去噪网络的多个层次之间传递信息,以保留图像的全局结构和细节信息。该模块通过以下方式实现这一目标:

1.跳跃连接(Skip Connections):

  • 将前一个去噪步骤的特征图直接传递到当前去噪步骤。
  • 可以跨越多个层,甚至跨越不同分辨率的层。

2.残差学习(Residual Learning):

  • 学习输入图像与目标图像之间的残差,而不是直接学习目标图像本身。
  • 残差学习可以减轻模型的训练难度,提高模型的训练效率和性能。

3.特征融合(Feature Fusion):

  • 将跳跃连接传递过来的特征图与当前去噪步骤的特征图进行融合。
  • 融合策略可以采用加权平均或注意力机制。

4.残差块(Resi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱研究的小牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值