变分自编码器(Variational Autoencoder, VAE)是即梦(Dreamina)生成模型的重要组成部分,用于生成高质量的图像和视频内容。VAE结合了自编码器(Autoencoder)和变分推理(Variational Inference)的思想,能够在潜在空间中进行采样并生成新的数据。
1. 基本原理
1.1 变分自编码器概述
变分自编码器是一种生成模型,由两个主要部分组成:
1.编码器(Encoder):将输入数据(如图像)映射到潜在空间(Latent Space),生成潜在变量(Latent Variables)的分布参数。
2.解码器(Decoder):从潜在空间采样并重构输入数据。
VAE的核心思想是将输入数据编码为潜在空间的概率分布,而不是单一的潜在向量。这使得VAE能够在潜在空间中进行采样,生成新的、与训练数据相似但不完全相同的数据。
1.2 概率图模型
VAE的数学基础是变分推理,其概率图模型可以表示为:
其中: