
AIGC——图像
文章平均质量分 90
本专栏聚焦AI图像生成、风格迁移、图像修复等前沿技术,深度解析行业领先的工具和应用案例。无论您是设计师、艺术家还是技术爱好者,都能在这里找到关于AI如何改变图像创作的深度见解和实用指南。让我们一起见证AI如何赋能图像创作,开启视觉艺术的新篇章!
爱研究的小牛
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Stability AI技术浅析(三):Stable LM模型
Stability AI 的系列是基于 Transformer 架构的开源大语言模型(LLM),其设计目标是高效、可扩展且适合下游任务微调。原创 2025-08-18 21:28:37 · 143 阅读 · 0 评论 -
什么是AIGC(人工智能生成内容)
AIGC(人工智能生成内容)代表着内容生产方式的第三代范式演进。第一代PGC(专业生成内容)依赖于专业团队和机构,第二代UGC(用户生成内容)依托互联网平台赋能普通用户创作,而第三代AIGC则通过人工智能算法实现了内容的自动化生成9。从技术本质看,AIGC是基于预训练大模型、生成式对抗网络(GAN)、扩散模型等人工智能技术,通过已有数据寻找规律,并释放泛化能力生成相关内容的技术集合。AIGC有狭义和广义两种概念界定。原创 2025-08-17 16:05:47 · 432 阅读 · 0 评论 -
Stability AI技术浅析(二):LDM
Stability AI 的是其核心创新之一,通过将扩散过程迁移到低维潜在空间(Latent Space),显著提升了生成效率和质量。原创 2025-08-15 19:32:56 · 232 阅读 · 0 评论 -
Stability AI技术浅析(一)
Stability AI 是一家以开源和开放研究闻名的公司,其核心技术围绕生成式人工智能(Generative AI),尤其是在图像、音频、视频和语言模型领域。其最著名的产品是(文本到图像生成模型),此外还涉足大语言模型(如 Stable LM)、代码生成、3D 生成等方向。原创 2025-08-14 21:21:14 · 309 阅读 · 0 评论 -
Qwen-Image(阿里通义千问)技术浅析(二)
Image-Text Matching Loss:判断视觉特征与文本是否匹配。(参考SwinV2),使用16x16窗口+4像素重叠,提升局部特征连续性。Image-Generation Loss:基于视觉特征的文本生成损失。提取ViT不同层特征(如第6/12/18层输出)替代绝对位置编码,增强对不同分辨率适应性。每层注意力头可学习偏置矩阵。原创 2025-08-13 19:35:43 · 304 阅读 · 0 评论 -
Qwen-Image(阿里通义千问)技术浅析(一)
Qwen-Image(阿里通义千问多模态模型)是阿里巴巴推出的视觉-语言多模态大模型,能够理解图像内容并完成复杂的跨模态任务。原创 2025-08-12 19:20:01 · 279 阅读 · 0 评论 -
Manus创始人深度复盘:AI Agent产品的技术架构与战略转型
成本对比:同样任务处理,中国区单位成本是亚太区的2.3倍。付费转化率:中国区1.2% vs 全球平均4.7%微信/支付宝等超级App的适配代码占比达17%Zstandard:压缩比38%,耗时12ms。每季度需要投入3名高级工程师专职维护兼容性。国际版API平均延迟:180-220ms。中国版特殊部署延迟:480-720ms。信息保持准确率:93%(7天跨度测试)自研算法:压缩比39%,耗时5ms。存储效率:相比纯文本节省68%空间。:本地化部署导致的延迟与费用差异。LZ4:压缩比42%,耗时8ms。原创 2025-08-11 17:39:37 · 202 阅读 · 0 评论 -
Adobe Firefly 技术浅析(三):GANs 的改进
生成式对抗网络(GANs)在图像生成领域取得了显著的进展,但原始的 GANs 在训练稳定性、生成质量以及多样性方面存在一些挑战。Adobe Firefly 在其图像生成技术中采用了多种改进的 GANs 方法,以提高生成图像的质量和多样性。原创 2025-03-11 21:15:51 · 364 阅读 · 0 评论 -
Adobe Firefly 技术浅析(二):Transformer生成模型
Transformer 模型最初由 Vaswani 等人在 2017 年提出,用于自然语言处理(NLP)任务。其核心是自注意力机制(Self-Attention),能够捕捉输入数据中长距离的依赖关系。在图像生成任务中,Transformer 模型将图像表示为一系列的像素或图像块(patches),然后利用自注意力机制生成新的图像。原创 2025-03-11 15:26:07 · 478 阅读 · 0 评论 -
Unity AI 技术浅析(一)
Unity AI图像生成技术主要依赖于其内置的机器学习工具包(ML-Agents)和第三方AI框架(如TensorFlow、PyTorch等),结合Unity强大的渲染引擎,实现从简单的纹理生成到复杂的3D场景和角色图像的自动生成。原创 2025-03-07 09:35:13 · 273 阅读 · 0 评论 -
Adobe Firefly 技术浅析(一)
Adobe Firefly 基于生成式对抗网络(GAN)和深度学习技术,通过分析和学习大量图像数据,生成新的图像内容。生成器负责生成新的图像,而判别器则负责区分生成的图像和真实图像。它利用深度学习技术,特别是生成对抗网络(GANs)和扩散模型(Diffusion Models),来生成高质量的图像。系统还支持用户反馈,用于持续优化模型。Firefly 支持通过文本描述生成图像,这需要结合自然语言处理(NLP)和图像生成技术。判别器的损失函数:使真实图像的输出概率接近 1,生成图像的输出概率接近 0。原创 2025-03-04 20:30:06 · 415 阅读 · 0 评论 -
CoralStyle CLIP 技术浅析(五):自适应对比学习
CoralStyle CLIP的自适应对比学习技术是其实现跨模态理解和风格迁移的关键部分。通过自适应对比学习,CoralStyle CLIP能够有效地对齐文本和图像特征,并在特征空间中捕捉更细粒度的语义关系。原创 2025-03-04 11:25:42 · 252 阅读 · 0 评论 -
CoralStyle CLIP 技术浅析(四):多层次特征融合
CoralStyle CLIP 是一种结合了(Contrastive Language–Image Pretraining)和多风格图像生成技术的模型。其核心在于通过多层次特征融合技术,将文本和图像的特征进行高效融合,从而实现跨模态的语义对齐和风格化生成。原创 2025-02-24 15:50:26 · 287 阅读 · 0 评论 -
CoralStyle CLIP 技术浅析(三):风格特征融合
CoralStyle CLIP 是一种基于。原创 2025-02-24 11:09:31 · 194 阅读 · 0 评论 -
清影2.0(AI视频生成)技术浅析(四):计算机视觉(CV)
清影2.0 是一个基于人工智能的视频生成平台,其核心计算机视觉(CV)技术包括图像处理与增强、动作捕捉与平滑等。这些技术通过深度学习、生成对抗网络(GAN)、光流估计等方法,实现了高质量的视频生成和编辑。清影2.0 的核心目标是通过计算机视觉技术生成高质量的视频内容,其主要功能包括:图像处理与增强:提升视频帧的质量和清晰度。动作捕捉与平滑:捕捉视频中的动作并生成平滑的过渡。图像处理与增强模块的核心任务是通过深度学习技术提升视频帧的质量和清晰度。图像处理与增强技术基于卷积神经网络(CNN)和生成对抗网络(GA原创 2025-02-21 11:30:14 · 581 阅读 · 0 评论 -
CoralStyle CLIP 技术浅析(二):风格特征提取
风格特征提取的目标是从图像中提取出能够反映其风格(如色彩、纹理、光影等)的特征表示。CoralStyleCLIP 通过以下三个主要步骤实现这一目标:1.特征图提取(Feature Map Extraction)2.Gram 矩阵计算(Gram Matrix Computation)3.风格特征编码(Style Feature Encoding)原创 2025-02-15 16:45:24 · 316 阅读 · 0 评论 -
CoralStyle CLIP 技术浅析(一)
CoralStyleCLIP 是由阿里巴巴达摩院开发的一种基于 CLIP(Contrastive Language-Image Pre-Training)模型的创新技术,旨在实现更高效、更精准的图像和文本匹配。原创 2025-02-15 12:09:39 · 180 阅读 · 0 评论 -
即梦(Dreamina)技术浅析(六):多模态生成模型
多模态生成模型的目标是结合不同模态的数据(如文本和图像),生成新的视觉内容。其核心思想是利用文本描述引导图像或视频的生成过程,使得生成结果能够准确反映用户的意图。原创 2025-02-08 21:38:23 · 530 阅读 · 0 评论 -
即梦(Dreamina)技术浅析(五):变分自编码器
变分自编码器是一种生成模型,由两个主要部分组成:1.原创 2025-02-08 18:25:01 · 240 阅读 · 0 评论 -
即梦(Dreamina)技术浅析(四):生成对抗网络
即梦(Dreamina) 的生成对抗网络(GAN,Generative Adversarial Network)技术是其核心功能之一,用于生成高质量的图像、文本和视频内容。GAN 是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)两部分组成,通过对抗训练的方式不断提升生成内容的质量。GAN 的核心思想是通过生成器(Generator)和判别器(Discriminator)的对抗训练,使生成器能够生成逼真的数据。生成器的目标是生成与真实数据分布一致的样本,而判别器的目标是原创 2025-02-01 13:25:38 · 727 阅读 · 0 评论 -
即梦(Dreamina)技术浅析(三):数据库与存储
用户数据存储:存储用户的基本信息、行为数据、偏好设置等。生成内容存储:存储用户生成的内容(如图像、文本、视频等)。模型参数存储:存储 AI 模型的参数和训练数据。每个模块都依赖于高效的存储技术和数据库系统,以下将逐一详细讲解。NI。原创 2025-02-01 11:42:31 · 693 阅读 · 0 评论 -
讯飞绘镜(ai生成视频)技术浅析(四):图像生成
文本理解与视觉元素提取:解析脚本中的场景描述,提取关键视觉元素(如人物、场景、物体等)。视觉元素生成:根据文本描述生成具体的视觉元素(如人物、场景、物体等)。分镜画面生成:将视觉元素组合成连贯的分镜画面。画面优化:对生成的分镜画面进行后处理,提升视觉效果。原创 2025-01-31 17:54:17 · 1202 阅读 · 0 评论 -
即梦(Dreamina)技术浅析(二):后端AI服务
文本处理模块的主要任务是将用户输入的文字提示词转换为机器可以理解的向量表示。这一过程包括分词、词嵌入和语义编码,旨在捕捉文本的语义信息,为后续的图像和视频生成提供准确的指导。原创 2025-01-25 19:13:31 · 767 阅读 · 0 评论 -
即梦(Dreamina)技术浅析(一)
1.技术架构与核心组件2.生成模型的具体实现3.多模态融合技术4.训练数据与模型优化5.用户交互与创作流程6.技术挑战与解决方案7.未来发展方向即梦的技术架构可以分为以下几个核心组件:功能模块:技术实现:功能模块:技术实现:功能模块:技术实现:即梦的生成模型主要基于生成对抗网络(GAN)和变分自编码器(VAE)等深度学习技术。以下是具体实现细节:基本原理:实现细节:基本原理:实现细节:基本原理:实现细节:即梦采用了多模态融合技术,将文本和图像信息结合起来,生成更符合用户需求的视觉内容。具体实现包括:数据来源原创 2025-01-25 17:09:38 · 1965 阅读 · 0 评论 -
扩散模型(Diffusion Model)——生成模型
扩散模型(Diffusion Model)是一种生成模型,最近在图像生成、视频生成、语音合成等领域取得了显著的进展。与传统的生成对抗网络(GAN)和变分自编码器(VAE)不同,扩散模型通过逐步将噪声添加到数据并反转这一过程来生成新样本。原创 2024-08-09 11:27:54 · 6969 阅读 · 0 评论 -
Midjourney技术浅析(八):交互与反馈
用户交互与反馈模块的主要功能包括:1.用户输入:接收用户提供的文本描述、参数设置等输入信息。2.图像生成:根据用户输入生成图像。3.用户反馈:收集用户对生成图像的反馈,例如评分、评论等。4.模型优化:利用用户反馈数据优化模型,提高图像生成质量和用户满意度。原创 2024-12-31 08:34:40 · 1133 阅读 · 0 评论 -
Midjourney技术浅析(七):图像风格化
风格迁移是一种将一张图像的风格(Style)应用到另一张图像的内容(Content)上的技术。在 Midjourney 中,风格迁移可以将用户输入的文本描述生成的图像转换为特定艺术风格,例如梵高风格、毕加索风格、印象派风格等。内容损失风格损失对抗损失是判别器对生成图像的输出值。总损失图像滤镜是一种对图像进行各种处理的技术,例如调整亮度、对比度、饱和度、色调、锐度等。在 Midjourney 中,图像滤镜可以用于增强图像的视觉效果,或实现特定的艺术效果。原创 2024-12-30 15:32:36 · 1618 阅读 · 0 评论 -
Midjourney技术浅析(六):图像后处理
PSNRSSIMLPIPSLPIPS 的计算过程较为复杂,涉及深度学习模型的特征提取和距离计算,具体公式可以参考相关文献。FIDFID 的计算过程也较为复杂,涉及特征提取和 Frechet 距离的计算。原创 2024-12-30 08:15:34 · 1037 阅读 · 0 评论 -
Midjourney技术浅析(五):图像细节处理
超分辨率技术旨在将低分辨率图像转换为高分辨率图像,同时尽可能保留或恢复图像的细节和清晰度。Midjourney 采用基于深度学习的超分辨率方法,特别是生成对抗网络(GAN)和卷积神经网络(CNN)。原创 2024-12-29 19:28:37 · 1200 阅读 · 0 评论 -
Midjourney技术浅析(四):扩散模型
扩散模型是一种生成模型,其核心思想是通过逐步向数据中添加噪声(正向过程),然后学习一个逆向过程来从噪声中恢复原始数据(逆向过程)。Midjourney 的扩散模型模块如下:1.正向过程(Forward Process): 将数据逐步转换为噪声。2.逆向过程(Reverse Process): 从噪声中逐步恢复原始数据。3.条件扩散模型(Conditional Diffusion Model): 在逆向过程中加入条件信息,例如文本描述,以生成符合特定条件的图像。4.原创 2024-12-29 16:12:48 · 1435 阅读 · 0 评论 -
Midjourney技术浅析(三):文本编码
文本编码模块的主要任务是将用户输入的文本描述转换为向量表示,这些向量包含了文本的语义信息,并能够被后续的图像生成模型理解和使用。Midjourney 的文本编码模块关键步骤如下:1.预训练语言模型(Pre-trained Language Model): 利用预训练的语言模型对文本进行编码,捕捉文本的语义信息。2.词嵌入(Word Embedding): 将单词转换为向量表示。3.上下文感知嵌入(Contextual Embedding): 根据单词的上下文环境生成嵌入向量。4.原创 2024-12-28 16:14:16 · 1044 阅读 · 0 评论 -
Midjourney技术浅析(二):文本预处理过程
NLP 预处理是自然语言处理的第一步,其主要目的是将原始文本转换为机器可理解的格式,并去除噪声信息,为后续的语义理解、特征提取和模型训练做好准备。Midjourney 的 NLP 预处理过程主要包括以下几个步骤:1.分词(Tokenization): 将文本分割成单词、词组、符号等基本单元。2.词形还原(Lemmatization): 将单词还原为其基本形式(词根)。3.去除停用词(Stop Words Removal): 去除对语义理解没有帮助的常用词。4.原创 2024-12-28 11:45:36 · 1112 阅读 · 0 评论 -
Midjourney技术浅析(一)
Midjourney 的工作流程如下:1.文本理解与编码(Text Understanding and Encoding):将用户输入的文本描述转换为机器可理解的向量表示。2.图像生成(Image Generation):根据文本向量生成图像。3.图像优化与后处理(Image Optimization and Post-processing):对生成的图像进行优化,提高图像的质量和视觉效果。4.用户交互与反馈(User Interaction and Feedback)原创 2024-12-27 14:56:13 · 1585 阅读 · 0 评论 -
DemoFusion 技术浅析(七):解码过程
解码模块的主要目标是将来自融合模块的潜在特征图转换为高分辨率图像。该模块通过以下步骤实现:1.解码器网络(Decoder Network)将潜在特征图解码为初步的高分辨率图像。通常使用 U-Net 解码器架构。2.后处理(Post-Processing)对生成的图像进行去噪、对比度增强、亮度调整等处理,以提升图像质量。3.精细化调整(Refinement)对图像进行进一步的精细化调整,例如,使用超分辨率网络(Super-Resolution Network)提升图像分辨率。原创 2024-12-10 10:15:35 · 1105 阅读 · 0 评论 -
DemoFusion 技术浅析(六):局部和全局路径融合
局部和全局路径融合模块的主要目标是将图像的局部细节信息与全局语义信息进行有效融合,以生成高质量的高分辨率图像。该模块通过以下方式实现:1.局部路径(Local Path)处理图像的局部细节信息,例如,纹理、边缘等。输入通常来自扩张采样模块的输出。2.全局路径(Global Path)处理图像的全局语义信息,例如,物体形状、场景布局等。输入通常来自跳跃残差模块的输出。3.融合策略(Fusion Strategy)将局部路径和全局路径的输出进行融合。原创 2024-12-09 11:23:19 · 1142 阅读 · 0 评论 -
DemoFusion 技术浅析(五):扩张采样
扩张采样模块的主要目标是在去噪过程中引入全局上下文信息,以增强图像的全局语义一致性和细节表现力。该模块通过以下方式实现:1.扩张卷积(Dilated Convolution)扩展卷积核的视野(receptive field),捕捉更大范围的上下文信息。2.全局注意力机制(Global Attention Mechanism)通过注意力机制捕捉图像的全局依赖关系,增强模型对全局语义信息的理解。3.上下文融合(Contextual Fusion)原创 2024-12-09 09:57:13 · 1324 阅读 · 0 评论 -
DemoFusion 技术浅析(四):跳跃残差
跳跃残差模块的主要功能是在去噪网络的多个层次之间传递信息,以保留图像的全局结构和细节信息。该模块通过以下方式实现这一目标:1.跳跃连接(Skip Connections)将前一个去噪步骤的特征图直接传递到当前去噪步骤。可以跨越多个层,甚至跨越不同分辨率的层。2.残差学习(Residual Learning)学习输入图像与目标图像之间的残差,而不是直接学习目标图像本身。残差学习可以减轻模型的训练难度,提高模型的训练效率和性能。3.特征融合(Feature Fusion)原创 2024-12-08 21:17:20 · 1075 阅读 · 0 评论 -
DemoFusion 技术浅析(三):渐进式上采样
的主要目标是。原创 2024-12-08 20:02:27 · 1464 阅读 · 0 评论 -
DemoFusion 技术浅析(二):
DemoFusion 是一款基于深度学习的视频生成与编辑工具,其核心功能依赖于强大的 AI 模型和复杂的信号处理技术。其中,和是 DemoFusion 中两个关键的技术模块,直接影响视频生成的初始状态和最终质量。原创 2024-12-06 17:11:02 · 704 阅读 · 0 评论 -
DemoFusion 技术浅析(一)
DemoFusion 是一种旨在提升图像分辨率的先进技术框架,特别适用于现有的潜在扩散模型(LDMs),如 Stable Diffusion(SDXL)。原创 2024-12-06 15:16:06 · 870 阅读 · 0 评论