书生大模型实战营 浦语提示词工程实践

在这里插入图片描述
使用streamit运行ui界面,连接服务器的23333端口
在这里插入图片描述
配置ssh连接,在本地电脑打开

在这里插入图片描述
使用教程里面的prompt,1.8b水平还是有限

定制prompt完成浮点数比较

# Role: MathMaster

## Profile
- author: LangGPT
- version: 1.0
- language: 中文/英文
- description: 你是一个数学大师,擅长比较浮点数的大小。你会将整数部分先进行比较,如果无法判断,再对小数部分进行处理,将其乘以一个数使其变成整数,然后再进行比较。请你严格按照Workflows进行回复


## Goals:
严格按照Workflows进行思考,然后返回两个浮点数的比较结果。

## Workflows
1. 比较两个浮点数的整数部分。
2. 如果整数部分不同,直接返回结果。
3. 如果整数部分相同,选择一个适当的乘数,将小数部分转换为整数进行比较。
4. 根据转换后的结果确定浮点数的大小关系。
## example
### 示例1
/prompt: 12.11和12.9哪个大?
/answer: 
让我们按照Workflows进行判断。
1. 比较它的整数部分。12.11的整数部分是12,12.9的整数部分是12,12=12,两者一样大,需要判断小数。
2. 12.11的小数部分是0.11,12.9的小数部分是0.9,同时乘以100,得到11和90
3. 因为11<90,所以12.9大于12.11
### 示例2
/prompt: 13.21和12.75哪个大?
/answer: 
让我们按照Workflows进行判断。
1. 比较它的整数部分。13.21的整数部分是13,12.75的整数部分是12,13>12,因此13.21比12.75大,无需判断小数。

在这里插入图片描述
由于1.8b能力本来就有限,所以这里回答出来也只是碰巧回答出来,或者说是按照example回答出来的,而不是真的会回答(毕竟17和23谁大都比较不出)

### 关于LLM Prompt Engineering Academic Papers 提示工程(Prompt Engineering)是大语言模型领域中的一个重要方向,专注于优化输入到模型的文本形式以获得更好的输出效果。以下是一些与该主题相关的资源和背景信息: #### 资源概述 开源项目《LLM实战教程》提供了一个全面的学习框架[^1],其中涵盖了如何编、开发和管理Prompt的内容。这不仅有助于理解基础理论,还提供了实际操作指南。 另外,“书生·浦语”作为一款先进的大型预训练语言模型,在其技术报告中也提到了有关Prompt设计的部分实践经验和研究成果[^2]。尽管主要聚焦于超大规模参数量及其应用场景,但它同样强调了高质量数据对于提升模型性能的重要性。 至于具体的学术论文方面,则可以从以下几个角度入手查找: - **综述类文章**:这些通常会总结当前最前沿的研究进展,并讨论不同类型的Prompts对结果的影响。 - **实验型研究**:通过具体案例分析来验证某些假设或者方法论的有效性。 下面给出一段示例代码用于展示如何利用Python访问arXiv API获取相关文献列表: ```python import requests def search_arxiv(query, max_results=10): url = f"http://export.arxiv.org/api/query?search_query=all:{query}&start=0&max_results={max_results}" response = requests.get(url) if response.status_code != 200: raise Exception(f"Failed to fetch data from arxiv: {response.text}") entries = [] import xml.etree.ElementTree as ET root = ET.fromstring(response.content) for entry in root.findall('{http://www.w3.org/2005/Atom}entry'): title = entry.findtext("{http://www.w3.org/2005/Atom}title").strip() summary = entry.findtext("{http://www.w3.org/2005/Atom}summary").strip() link = entry.findtext("{http://www.w3.org/2005/Atom}id").strip() entries.append({ 'Title': title, 'Summary': summary[:200]+'...', # Truncate long summaries 'Link': link }) return entries papers = search_arxiv('prompt engineering', max_results=5) for paper in papers: print(paper['Title']) print(paper['Summary']) print(paper['Link'], '\n') ``` 此脚本可以帮助快速定位一些公开可用的技术文档或白皮书链接。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值