Ignatius and the Princess IV
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32767 K (Java/Others)Total Submission(s): 21455 Accepted Submission(s): 8897
Problem Description
"OK, you are not too bad, em... But you can never pass the next test." feng5166 says.
"I will tell you an odd number N, and then N integers. There will be a special integer among them, you have to tell me which integer is the special one after I tell you all the integers." feng5166 says.
"But what is the characteristic of the special integer?" Ignatius asks.
"The integer will appear at least (N+1)/2 times. If you can't find the right integer, I will kill the Princess, and you will be my dinner, too. Hahahaha....." feng5166 says.
Can you find the special integer for Ignatius?
"I will tell you an odd number N, and then N integers. There will be a special integer among them, you have to tell me which integer is the special one after I tell you all the integers." feng5166 says.
"But what is the characteristic of the special integer?" Ignatius asks.
"The integer will appear at least (N+1)/2 times. If you can't find the right integer, I will kill the Princess, and you will be my dinner, too. Hahahaha....." feng5166 says.
Can you find the special integer for Ignatius?
Input
The input contains several test cases. Each test case contains two lines. The first line consists of an odd integer N(1<=N<=999999) which indicate the number of the integers feng5166 will tell our hero. The second line contains the
N integers. The input is terminated by the end of file.
Output
For each test case, you have to output only one line which contains the special number you have found.
Sample Input
5 1 3 2 3 3 11 1 1 1 1 1 5 5 5 5 5 5 7 1 1 1 1 1 1 1
Sample Output
3 5 1
个人觉得是比较水的题目,但在其他网站上面的分类上这道题目是属于动态规划类。后来百度了好几篇解析,也没看见用动态规划来做的。因此决定用自己最笨的方法来解决。
用数组存储每个数字出现的次数,因为考虑到有负数,所以就用了a,b两个数组来存储。如果输入的i为正,a[i]++,如果为负,b[-i]++。判断值是否大于(n+1)/2。如果大于,就记下来输出。
#include<stdio.h>
int a[100005],b[100005];
int main()
{
//freopen("input.txt","r",stdin);
int n,i,x,log;
while(scanf("%d",&n)!=EOF)
{
i=n;
sizeof(a,0,sizeof(a));
sizeof(b,0,sizeof(b));
while(i--)
{
scanf("%d",&x) ;
if(x>=0)
{
a[x]++;
if(a[x]>=(n+1)/2) log=x;
}
else
{
b[-x]++;
if(b[-x]>=(n+1)/2) log=-x;
}
}
printf("%d\n",log);
}
// fclose(stdin);
return 0;
}