直接套用学习的公式进行计算即可。
Exercise 1
Complete the compute_cost
below to:
-
Iterate over the training examples, and for each example, compute:
-
The prediction of the model for that example
fwb(x(i))=wx(i)+b f_{wb}(x^{(i)}) = wx^{(i)} + b fwb(x(i))=wx(i)+b -
The cost for that example cost(i)=(fwb−y(i))2cost^{(i)} = (f_{wb} - y^{(i)})^2cost(i)=(fwb−y(i))2
-
-
Return the total cost over all examples
J(w,b)=12m∑i=0m−1cost(i)J(\mathbf{w},b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} cost^{(i)}J(w,b)=2m1i=0∑m−1cost(i)- Here, mmm is the number of training examples and ∑\sum∑ is the summation operator
代码:
def compute_cost(x, y, w, b):
"""
Computes the cost function for linear regression.
Args:
x (ndarray): Shape (m,) Input to the model (Population of cities)
y (ndarray): Shape (m,) Label (Actual profits for the cities)
w, b (scalar): Parameters of the model
Returns
total_cost (float): The cost of using w,b as the parameters for linear regression
to fit the data points in x and y
"""
# number of training examples
m = x.shape[0]
# You need to return this variable correctly
total_cost = 0
### START CODE HERE ###
for i in range(m):
total_cost+=((b+w*x[i])-y[i])**2
total_cost/=2*m
return total_cost
Exercise 2
Please complete the compute_gradient
function to:
-
Iterate over the training examples, and for each example, compute:
-
The prediction of the model for that example
fwb(x(i))=wx(i)+b f_{wb}(x^{(i)}) = wx^{(i)} + b fwb(x(i))=wx(i)+b -
The gradient for the parameters w,bw, bw,b from that example
∂J(w,b)∂b(i)=(fw,b(x(i))−y(i)) \frac{\partial J(w,b)}{\partial b}^{(i)} = (f_{w,b}(x^{(i)}) - y^{(i)}) ∂b∂J(w,b)(i)=(fw,b(x(i))−y(i))
∂J(w,b)∂w(i)=(fw,b(x(i))−y(i))x(i) \frac{\partial J(w,b)}{\partial w}^{(i)} = (f_{w,b}(x^{(i)}) -y^{(i)})x^{(i)} ∂w∂J(w,b)(i)=(fw,b(x(i))−y(i))x(i)
-
-
Return the total gradient update from all the examples
∂J(w,b)∂b=1m∑i=0m−1∂J(w,b)∂b(i) \frac{\partial J(w,b)}{\partial b} = \frac{1}{m} \sum\limits_{i = 0}^{m-1} \frac{\partial J(w,b)}{\partial b}^{(i)} ∂b∂J(w,b)=m1i=0∑m−1∂b∂J(w,b)(i)∂J(w,b)∂w=1m∑i=0m−1∂J(w,b)∂w(i) \frac{\partial J(w,b)}{\partial w} = \frac{1}{m} \sum\limits_{i = 0}^{m-1} \frac{\partial J(w,b)}{\partial w}^{(i)} ∂w∂J(w,b)=m1i=0∑m−1∂w∂J(w,b)(i)
- Here, mmm is the number of training examples and ∑\sum∑ is the summation operator
代码:
def compute_gradient(x, y, w, b):
"""
Computes the gradient for linear regression
Args:
x (ndarray): Shape (m,) Input to the model (Population of cities)
y (ndarray): Shape (m,) Label (Actual profits for the cities)
w, b (scalar): Parameters of the model
Returns
dj_dw (scalar): The gradient of the cost w.r.t. the parameters w
dj_db (scalar): The gradient of the cost w.r.t. the parameter b
"""
# Number of training examples
m = x.shape[0]
# You need to return the following variables correctly
dj_dw = 0
dj_db = 0
### START CODE HERE ###
for i in range(m):
dj_db+=(w*x[i]+b)-y[i]
dj_dw+=((w*x[i]+b)-y[i])*x[i]
dj_dw=dj_dw/m
dj_db=dj_db/m
### END CODE HERE ###
return dj_dw, dj_db