
深度学习
文章平均质量分 88
Better Rose
CS研2,深度学习,参与发表一篇CCF-A,两篇SCI,计算机保研与数模竞赛经验分享
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习暑期科研项目(两个月发EI论文)
对本科生而言,越早接触系统的科研训练开始上手科研项目,就越能在未来的升学求职中占据很大的优势。暑假是提升个人简历、丰富科研经历的最佳时期!哈尔滨工业大学博士师兄也会在8月1日开始带大家上手科研项目,并撰写发表EI会议论文。原创 2025-07-21 18:25:24 · 1044 阅读 · 1 评论 -
人工智能与机器学习暑期科研项目招募(可发表论文)
华中科技大学博士研究生,研究方向深度学习与神经网络:卷积神经网络、循环神经网络、生成对抗网络等。自动化机器学习与元学习:自动化机器学习、元学习、神经架构搜索等。研究成果发表于(图像信息的计算机分析)(人工智能领域)(人工智能、神经科学相关领域)原创 2025-07-09 16:03:44 · 1037 阅读 · 1 评论 -
本科生科研背景提升——数模论文转学术
摘要修改:根据数模论文的摘要,截取与选定问题相关的部分,进行修改,使其具有逻辑性和连贯性,成为一个独立的研究部分。引言修改:同样针对选定问题,修改引言部分,写明研究背景和目的。原创 2025-06-09 11:08:02 · 464 阅读 · 0 评论 -
【论文写作】如何撰写基于模型拼接(A+B)的创新性论文
当你的研究创新主要是将两个现有模块(A和B)组合成一个新模块(C)时,论文写作需要巧妙突出这种组合的创新价值和实际效果。原创 2025-06-04 14:48:33 · 572 阅读 · 0 评论 -
Nature审稿人喜欢的绘图配色分享(附颜色代码)
这篇笔记整理了【Nature正刊绘图配色】,对于写论文或者是参加数学建模比赛。原创 2025-04-09 13:04:56 · 1507 阅读 · 0 评论 -
【每天一篇深度学习论文】ICLR 时间序列多尺度特征提取模块OS_block
这篇文章的核心创新在于提出了一种基于素数核大小的Omni-ScaleBlock,能够高效覆盖所有接收场大小,从而避免了复杂的搜索过程,并在多个时间序列分类基准上实现了最先进的性能。其设计简单、高效且具有很强的扩展性,为时间序列分类任务提供了一种新的解决方案。原创 2025-01-20 09:17:56 · 1334 阅读 · 0 评论 -
【每天一篇深度学习论文】LSTM+CNN复杂序列数据和图像数据处理
文章提出了一种结合3DCNN、2DCNN和Bi-LSTM的混合神经网络模型(HSSNB),用于高光谱图像分类。该模型旨在减少训练参数数量的同时提高分类准确性,并通过在三个数据集(IndianPines、PaviaUniversity和SalinasScene)上的测试,展示了其优于现有深度学习模型的性能。原创 2024-12-14 11:34:02 · 1441 阅读 · 0 评论 -
【每天一篇深度学习论文】残差Swin Transformer块与交叉注意力模块RCAM
这篇文章介绍了一种新的立体图像超分辨率(StereoImageSuper-Resolution,stereoSR)方法,名为SwinFSR。该方法基于SwinIR(一种用于单图像恢复的Transformer结构)和快速傅里叶卷积(FastFourierConvolution,FFC)获取的频域知识。原创 2024-12-14 11:23:44 · 1343 阅读 · 0 评论 -
【每天一篇深度学习论文】时间-频率特征融合PoseFormerV2
文章提出一种方法,用于3D人体姿态估计,它通过在频域中探索长骨架序列的紧凑表示来提高效率和对噪声2D关节检测的鲁棒性,与原始PoseFormer相比,在速度-准确性权衡和对2D关节检测噪声的鲁棒性方面显著提高了性能。原创 2024-12-14 11:04:06 · 1104 阅读 · 0 评论 -
【每天一篇深度学习论文】ACM 即插即用TSConformerBlock 模块
提出了第一个基于Conformer的Metric-GAN架构(CMGAN),用于单通道语音增强,包括去噪(denoising)、去混响(dereverberation)和超分辨率(super-resolution)任务。原创 2024-12-14 10:55:22 · 1083 阅读 · 0 评论 -
【每天一篇深度学习论文】即插即用DO-Conv模块
DO-Conv: Depthwise Over-parameterized Convolutional Layer链接: https://arxiv.org/abs/2006.12030引入深度方向过参数化卷积层(DO-Conv):模型以深度方向过参数化卷积层(DO-Conv)为核心,通过将传统卷积层扩展为深度卷积与标准卷积的组合,提升了模型的训练效率和最终性能。在训练阶段,DO-Conv独立优化两个卷积操作,而在推理阶段将它们“折叠”成一个等效的标准卷积,保持计算效率。DO-Conv可无缝替代现有卷积网络原创 2024-12-14 10:49:08 · 1495 阅读 · 0 评论 -
【每天一篇深度学习论文】超轻量级的多核U形网络UltraLightUNet
论文提出一种超轻量级的多核U形网络UltraLightUNet,用于医学图像分割,通过引入多核倒残差(MKIR)和多焦点注意力机制(MKIRA)提高特征编码和细化能力,在多个医学图像分割基准测试中超越SOTA,特别是在DICE评分上超越了TransUNet。原创 2024-12-06 10:57:17 · 1113 阅读 · 1 评论 -
【每天一篇深度学习论文】特征融合——注意力融合
论文提出了一种名为SMAT的轻量级目标跟踪架构,它利用可分离的自注意力和混合注意力变换器来有效地融合模板和搜索区域的特征,以生成更优越的特征编码,并通过对编码特征进行全局上下文建模来实现鲁棒的目标状态估计。SMAT在多个基准数据集上超越了相关轻量级跟踪器的性能,同时在CPU上以37帧每秒、GPU上以158帧每秒的速度运行,并具有3.8M的参数量。原创 2024-12-05 10:14:31 · 1323 阅读 · 0 评论 -
【每天一篇深度学习论文】轻量化自适应提取模块LAE
LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection链接: https://arxiv.org/pdf/2408.14087轻量级模型设计:提出了一种新型的模型,名为 Lightweight Shunt Matching-YOLO (LSM-YOLO),它结合了 Lightweight Adaptive Extraction (LAE) 和 Multipath Shunt Feature Matching (MSFM),旨在原创 2024-12-05 10:05:16 · 2175 阅读 · 0 评论 -
【每天一篇深度学习论文】(IEEE TIP)即插即用多尺度特征提取模块MSB
Mix Structure Block contains multi-scale parallel large convolution kernel module and enhanced parallel attention module链接: https://arxiv.org/abs/2305.17654这篇文章介绍了一个名为MixDehazeNet的图像去雾网络,其主要创新点包括:多尺度并行大卷积核模块(MSPLCK):该模块结合了多尺度特性和大的感受野,能够同时捕获大雾区域和恢复纹理细节。与单一大原创 2024-12-04 18:08:17 · 2239 阅读 · 0 评论 -
【每天一篇深度学习论文】区域与稀疏注意力融合:ViT的创新型架构
Fusion of regional and sparse attention in Vision Transformers链接: https://arxiv.org/pdf/2406.08859文章的主要创新点可以概括为以下几个方面:融合区域和稀疏注意力:提出了一种新的注意力机制,称为Atrous Attention,它结合了区域注意力和稀疏注意力的优点,通过动态整合局部和全局信息,同时保持层次结构。Atrous Attention机制:受到atrous convolution(扩张卷积)的启发,提出了一原创 2024-12-04 09:54:24 · 2041 阅读 · 0 评论 -
【每天一篇深度学习论文】(CVPR)大核卷积+Attention的高效图像去雨方法
Dilated Convolutional Transformer for High-Quality Image Deraining链接: https://openaccess.thecvf.com/content/CVPR2023W/UG2/papers/Li_Dilated_Convolutional_Transformer_for_High-Quality_Image_Deraining_CVPRW_2023_paper.pdf论文提出了一种名为Dilated Convolutional Transf原创 2024-12-04 09:41:04 · 1080 阅读 · 0 评论 -
【每天一篇深度学习论文】2024多级卷积模块MCM
MAGNet: Multi-scale Awareness and Global fusion Network for RGB-D salient object detection | KBS链接: https://www.sciencedirect.com/science/article/abs/pii/S0950705124007603MCM作为一个即插即用模块:原创 2024-12-04 09:26:08 · 1673 阅读 · 0 评论 -
【每天一篇深度学习论文】即插即用半小波注意力模块HWAB
HALF WAVELET ATTENTION ON M-NET+ FOR LOW-LIGHT IMAGE ENHANCEMENT链接: https://arxiv.org/abs/2203.01296HWMNet 继承了 U-Net 和 M-Net 的分层结构,包含以下关键模块:M-Net+ 是基于 M-Net 的改进架构,解决了原始 M-Net 的两个主要问题:HWAB 是模型的核心创新模块,用于增强特征提取的多样性:1. 输入处理:2.多层次特征提取:3. 特征融合:4. 输出生成:HWAB 作为一个原创 2024-12-02 10:23:45 · 1615 阅读 · 0 评论 -
【每天一篇深度学习论文】(水论文神组合)ResNet+注意力
InceptionCapsule: Inception-Resnet and CapsuleNet with self-attention for medical image Classification链接: https://arxiv.org/pdf/2402.02274InceptionCapsule模型的总体架构可以概括为以下几个关键部分:Inception-ResNet层:这是模型的基础特征提取部分,它使用不同大小的卷积核(如3∗33*33∗3和5∗55*55∗5)同时进行多种卷积操作,然后将这些原创 2024-12-02 10:15:09 · 1804 阅读 · 0 评论 -
【每天一篇深度学习论文】(IEEE 2024)即插即用特征增强模块FEM
FFCA-YOLOforSmallObjectDetectioninRemoteSensingImageshttps://ieeexplore.ieee.org/document/10423050FFCA-YOLO模型在YOLOv5框架基础上,增加了三个轻量级模块:特征增强模块(FEM)用于丰富局部特征信息,特征融合模块(FFM)通过改进的多尺度融合策略加权整合特征,空间上下文感知模块(SCAM)用全局池化获取通道和空间的上下文信息,从而提升小目标和背景的区分能力。此外,模型的轻量化版本L-原创 2024-11-30 13:57:05 · 9407 阅读 · 0 评论 -
【每天一篇深度学习论文】多尺度特征提取和融合模块CP-PPA
CPP-Net: Embracing Multi-Scale Feature Fusion into Deep Unfolding CP-PPA Network for Compressive Sensinghttps://openaccess.thecvf.com/content/CVPR2024/papers/Guo_CPP-Net_Embracing_Multi-Scale_Feature_Fusion_into_Deep_Unfolding_CP-PPA_Network_CVPR_2024_pap原创 2024-12-01 13:07:18 · 1089 阅读 · 0 评论 -
【每天一篇深度学习论文】基于CNN和Transformer的局部和全局特征提取模块
LEFormer:AHybridCNN-TransformerArchitectureforAccurateLakeExtractionfromRemoteSensingImageryhttps://arxiv.org/pdf/2308.04397这篇文章介绍了一种名为LEFormer的混合CNN-Transformer架构,用于从遥感图像中准确提取湖泊。文章的创新点主要包括:混合架构:LEFormer结合了卷积神经网络(CNN)和Transformer架构,以捕获局部和全局特征,并原创 2024-12-01 13:19:49 · 3348 阅读 · 0 评论 -
【论文阅读】Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-le
使用patch级别的分类标签来实现对组织病理图像的组织语义分割,最终减少了标注的工作量。提出了一个包括分类和分割两个阶段的两步模型。在分类阶段,我们提出了一种基于CAM的模型,通过patch级别的标签来生成伪掩模。在分割阶段,我们提出了多层伪监督算法Multi-Layer Pseudo-Supervision实现了组织语义的分割。介绍了一种新的肺腺癌弱监督语义分割(WSSS)数据集(LUAD-HistoSeg)。我们提出的模型比五种最先进的WSSS方法性能更好。原创 2024-07-21 21:23:50 · 940 阅读 · 0 评论 -
【论文阅读】Causal Intervention for Weakly-Supervised Semantic Segmentation
给定仅具有图像级类标签的训练图像,我们首先训练一个多标签分类模型。对于每个图像,我们推断出特定类的种子区域(the class-specific seed areas),使用CAM应用于上述训练模型对于种子区域进行扩张以获得最终的像素级的分割伪标签,这些伪掩膜用作训练标准模型的 ground-truth(使用图像数据集和分割伪标签训练传统的分割算法)文章对于从图像级标签推断像素级掩码本质,给出了一个基于因果推理的正式答案,并提出了一个原则性的基本解决方案。原创 2022-10-23 11:23:41 · 573 阅读 · 1 评论 -
【论文阅读】Causality matters in medical imaging
因果推断,能够比较全面清晰地理解数据产生机制和相互影响关系,从而可以更容易地提前确定任何问题,并可以通过使用合适的数据收集、注释和ML策略来解决,从而为医疗图像中的机器学习方法提供指导和参考介绍如何利用因果图(Causal Diagram)为在医疗图像领域应用机器学习方法处理图像分类,图像分割等具体问题提供参考。主要关心如何利用因果帮助解决在上述任务中可能遇到的数据缺乏(Data Scarcity)及数据不匹配(Data Mismatch)问题。原创 2022-10-18 15:08:07 · 1074 阅读 · 2 评论 -
【每天一篇深度学习论文】即插即用频域增强通道注意力机制EFCAttention
FECAM:FrequencyEnhancedChannelAttentionMechanismforTimeSeriesForecastinghttps://arxiv.org/abs/2212.01209论文中的模型结构主要是利用离散余弦变换(DCT)提取时间序列数据的频域信息,通过频域增强通道注意力机制(FECAM)在不同通道和频率分量之间自适应建模,从而捕捉到更多关键特征,最终结合全连接层或投影层生成增强的预测输出。这一结构既可独立用于预测,也能无缝集成到其他模型中,提升其预测性能原创 2024-11-28 18:24:09 · 1876 阅读 · 0 评论 -
【每天一篇深度学习论文】即插即用CLEEGN模块:自动化EEG去伪影与重建
CLEEGN: A Convolutional Neural Network for Plug-and-Play Automatic EEG Reconstructionhttps://arxiv.org/pdf/2210.05988v2.pdfCLEEGN模型是一个基于编码器-解码器的轻量级卷积神经网络,通过多层卷积结构来自动去除EEG信号中的伪影。编码器部分提取信号的空间和时间特征,而解码器则将这些特征重建为无伪影的EEG信号。在每层卷积层之后使用零填充和批归一化,以确保信号在去伪影过程中保持一致性并提原创 2024-11-28 09:55:38 · 1046 阅读 · 0 评论 -
【每天一篇深度学习论文】(IEEE 2024)即插即用双时相特征聚合模块BFAM
B2CNet:AProgressiveChangeBoundary-to-CenterRefinementNetworkforMultitemporalRemoteSensingImagesChangeDetectionhttps://ieeexplore.ieee.org/document/10547405B2CNet模型基于编码器-解码器架构,由变化边界感知模块(CBM)、双时相特征聚合模块(BFAM)和深度特征提取模块(DFEM)组成。CBM负责边界信息的提取和增强,BFAM原创 2024-11-28 09:51:09 · 3189 阅读 · 0 评论 -
【每天一篇深度学习论文】(CVPR2024)即插即用高效上采样卷积块EUCB
EMCAD:Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentationhttps://arxiv.org/pdf/2405.06880该模型由一个分层编码器和高效多尺度卷积注意力解码器(EMCAD)组成,通过编码器提取不同尺度的特征图,然后利用EMCAD中的多尺度卷积注意力模块、分组注意力门和上采样模块逐步融合和增强这些特征,实现精确的医学图像分割。最终,通过分割头输出高分辨率的分割结果,模型在保原创 2024-11-27 10:50:57 · 5577 阅读 · 0 评论 -
【每天一篇深度学习论文】即插即用特征注意力融合模块FFA
FFA-Net模型通过浅层特征提取、多个包含局部残差学习和特征注意力的组架构、全局残差学习和特征融合注意力模块来实现单图像去雾。模型利用通道和像素级的注意力机制自适应地调整不同特征的权重,融合浅层和深层信息,从而更有效地去除雾霾,保留细节和色彩的准确性。原创 2024-11-27 10:44:51 · 2149 阅读 · 0 评论 -
【深度学习入门项目】基于决策树的威斯康辛乳腺癌肿瘤预测
基于威斯康辛乳腺癌数据集,采用决策树的方法进行肿瘤预测。原创 2024-08-20 09:25:35 · 419 阅读 · 0 评论 -
【深度学习入门项目】多层感知器(MLP)实现手写数字识别
深度学习入门小项目——多层感知器MLP实现手写数字识别原创 2024-07-21 21:25:46 · 1327 阅读 · 0 评论 -
【深度学习入门项目】一文带你弄清决策树(鸢尾花分类)
决策树算法学习的关键在于如何在每一次进行决策判断时选取到最优划分属性,其中一个基本的准则是:决策树按照某个属性进行划分后,得到的分支节点所包含的样本应该尽可能属于同一类别,相当于分类后同个分支节点所包含的样本类别”越纯“。而在决策树算法的语境下,“信息熵”则可以看作是分类的不确定性,即进行某个属性进行划分之后,对叶节点中的样本类别的不确定程度。但是,有时这样的属性对分类器的泛化性是有害的。该参数对应的三个函数对应我们上文讲过的信息增益,增益率和基尼系数,每个函数对应的评价指标有所不同,有各自的特点。原创 2024-08-19 09:07:43 · 1771 阅读 · 0 评论 -
【深度学习入门项目】基于支持向量机的手写数字识别
本项目使用SVM训练模型,用于预测手写数字图片。原创 2024-08-19 08:58:17 · 969 阅读 · 0 评论 -
CAM实现的流程--基于Pytorch实现
CAM的实现原创 2023-08-22 21:26:46 · 814 阅读 · 0 评论 -
Pytorch处理数据与训练网络问题汇总(协同训练)
图像分割协同训练问题汇总原创 2023-03-05 14:30:05 · 835 阅读 · 0 评论 -
Pytorch搭建神经网络语法笔记
神经网络中常用的pytorch语法原创 2022-10-18 15:07:05 · 366 阅读 · 0 评论 -
pytorch基于pycharm的使用笔记
pycharm中使用pytorch遇到的问题以及解决方案原创 2022-10-18 09:34:15 · 927 阅读 · 0 评论 -
Pandas入门
简介Pandas 是 Python 语言的一个扩展程序库,用于数据分析。Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。Pandas 名字衍生自术语 “panel data”(面板数据)和 “Python data analysis”(Python 数据分析)Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据原创 2021-11-27 23:21:32 · 373 阅读 · 0 评论