【超详细教程】2025最新Pytorch安装教程( PyTorch+CUDA+Anaconda+PyCharm)

写在前面的话

亲爱的学弟学妹们好呀!我是你们的AI研究生学姐~今天要教大家一个超级实用的技能:如何从零开始配置PyTorch深度学习环境!

还记得我大二时第一次接触深度学习的惨痛经历吗?环境配置就卡了整整两周,差点劝退我这个计算机系的女生😭 所以今天学姐就把踩过的所有坑都告诉你们,保证让你们一次配置成功!

温馨小贴士:学姐已经把所有需要的安装包都打包好啦,国内下载超快,再也不用翻墙下载啦!文末有下载链接哦~

前期准备

首先,学姐要和大家确认一下电脑配置哦!毕竟我们要做的是深度学习,对电脑配置还是有一定要求的~

检查电脑配置

以下是学姐推荐的最低配置要求:

  • 处理器:Intel i5/AMD Ryzen 5 或以上
  • 内存:至少8GB,建议16GB+(学姐当年8GB内存跑模型时电脑卡得想哭😂)
  • 硬盘空间:至少20GB空闲空间
  • 显卡:最好有NVIDIA显卡,GTX 1050以上就很棒啦!

没有N卡的小可爱也不要担心,CPU版本的PyTorch也能学习基础知识,只是跑模型会慢一些。等你真正入门后,可以考虑蹭实验室的GPU或者使用云服务哦~

下载资源包

学姐已经把所有需要的软件打包好啦!包括:

  • Anaconda安装包(最新版)
  • CUDA 11.8完整安装包
  • PyCharm安装包
  • 详细配置视频版
  • 详细安装步骤word版

下载地址:
夸克网盘链接:
https://pan.quark.cn/s/57b1c90779eb

迅雷网盘链接:
https://pan.xunlei.com/s/VOOBfQd2gWYTKmE5dA8UT_DwA1?pwd=ib69#

学姐提醒:如果一个链接打不开,可以尝试另一个哦!密码都在链接里了,复制全部内容就好~

卸载旧版本(如果有)

如果你之前有安装过Anaconda或Miniconda,建议先卸载干净再重新安装:

  1. 打开资源包中的geek.exe小工具
  2. 搜索"Anaconda"
  3. 点击卸载
  4. 耐心等待完成

学姐贴心提示:这个小工具比Windows自带的卸载程序强太多了!它可以自动清理残留文件和注册表,不然可能会有冲突问题哦~

在这里插入图片描述

安装步骤

  1. 双击资源包中的Anaconda安装文件(文件名类似于Anaconda3-2024.xx-Windows-x86_64.exe

在这里插入图片描述

  1. 点击【Next】进入安装向导

在这里插入图片描述

  1. 同意许可协议,点击【I Agree】

在这里插入图片描述

  1. 选择【Just Me】(推荐),然后点击【Next】

在这里插入图片描述

  1. 选择安装位置(超级重要!):

    学姐严重警告⚠️:千万不要安装在C盘!Anaconda体积巨大,会占用很多系统盘空间!

    建议路径:D:\software\anaconda3(根据你的实际磁盘情况调整)

在这里插入图片描述

  1. 高级选项设置

    • ✅ 勾选"Add Anaconda3 to my PATH environment variable"
    • ✅ 勾选"Register Anaconda3 as my default Python"

    虽然很多教程说不要添加到PATH,但学姐觉得添加了会方便很多!特别是对初学者来说~

在这里插入图片描述

  1. 点击【Install】开始安装

    这一步可能需要等待几分钟,学姐建议去喝杯奶茶放松一下😋

在这里插入图片描述

  1. 安装完成后,点击【Next】,然后【Finish】完成安装

    不需要安装VSCode,我们等下会用PyCharm~

在这里插入图片描述

测试安装

  1. 按Win+R,输入cmd打开命令提示符

  2. 输入以下命令:

    conda --version
    
  3. 如果显示版本号(比如conda 23.7.2),恭喜你安装成功啦!🎉

如果提示"不是内部或外部命令",别担心!安装资源包中我写了详细的手动配置步骤。如果还不行,可能是环境变量没有正确设置,可以看看学姐准备的常见问题解决方案~

在这里插入图片描述

CUDA配置

学姐温馨提示:如果你没有NVIDIA显卡,可以直接跳到下一节哦!

检查显卡型号

首先,让我们确认一下你的电脑是否有N卡:

  1. 右键点击桌面的【此电脑】图标
  2. 选择【管理】
  3. 点击【设备管理器】
  4. 展开【显示适配器】
  5. 查看是否有NVIDIA开头的显卡型号

在这里插入图片描述

CUDA安装

CUDA是NVIDIA开发的一个并行计算平台,简单来说就是让你的深度学习任务能在显卡上飞速运行的工具!

  1. 双击资源包中的CUDA安装文件(cuda_11.8.0_xxx.exe

在这里插入图片描述

  1. 选择【自定义安装】(很重要!)

在这里插入图片描述

  1. 取消勾选【Visual Studio Integration】(这个不需要,省空间~)

在这里插入图片描述

  1. 点击【下一步】,然后点击【安装】

  2. 耐心等待安装完成

学姐有话说:市面上有很多版本的CUDA,但不是最新的就是最好的!因为PyTorch对CUDA版本有特定要求,学姐推荐CUDA 11.8,兼容性最好!

在这里插入图片描述

配置环境变量

安装完CUDA后,我们需要设置一下环境变量:

  1. 右键点击【此电脑】→【属性】→【高级系统设置】→【环境变量】

  2. 在【系统变量】中找到Path,点击【编辑】

  3. 点击【新建】,添加以下路径:

    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\x64

添加完成后,点击确定保存设置。

在这里插入图片描述

  1. 点击【确定】保存更改

验证CUDA

  1. 打开命令提示符(Win+R,输入cmd)

  2. 输入以下命令:

    nvcc --version
    
  3. 如果显示CUDA版本信息,就说明安装成功啦!

学姐的小秘密:如果这一步出问题,别着急!即使这里显示错误,等下安装完PyTorch后,只要torch.cuda.is_available()返回True就可以了~

在这里插入图片描述

PyTorch安装

终于到了最关键的一步!安装PyTorch本身!

创建虚拟环境

学姐的小技巧:为每个项目创建独立的环境是个好习惯!这样不同项目之间就不会互相影响啦~

  1. 点击【开始菜单】,搜索并打开【Anaconda Prompt】

  2. 输入以下命令创建名为pytorch的环境:

    conda create -n pytorch2.3.1 python=3.9
    
  3. 输入y确认创建

  4. 等待环境创建完成后,激活环境:

    conda activate pytorch2.3.1
    

    成功激活后,命令行前面会显示(pytorch2.3.1)这是虚拟环境名

打开官网https://pytorch.org/get-started/previous-versions/

找到与CUDA 11.8匹配的PyTorch版本,如PyTorch 2.3.1

!!复制conda安装命令(不要复制pip安装命令)

在这里插入图片描述

  1. 粘贴并执行PyTorch安装命令(使用之前复制的命令)
  2. 如果安装过程中断了,不要慌!重新输入上面的命令继续安装就好了~

在这里插入图片描述

验证PyTorch安装

  1. 在命令行中输入python进入Python环境

  2. 输入以下代码:

    import torch
    print(torch.__version__)
    print(torch.cuda.is_available())
    
  3. 第一行会显示PyTorch版本,第二行如果显示True,说明PyTorch可以使用GPU了!如果显示False但你确实有N卡,可能需要检查一下CUDA配置。

在这里插入图片描述

PyCharm配置

PyCharm是学姐最喜欢的Python IDE,界面美观,功能强大,自动补全代码超级爽!强烈推荐给大家使用~

资源包中有详细的安装的视频版本,如果需要看的直接观看即可。

安装PyCharm

  1. 双击资源包中的PyCharm安装文件

  2. 点击【Next】

  3. 选择安装路径(记得选择非C盘位置)

  4. 在安装选项页面全部勾选:

    • ✅ 创建桌面快捷方式
    • ✅ 添加到PATH
    • ✅ 关联.py文件
  5. 点击【Install】开始安装

  6. 安装完成后点击【Finish】

学姐小贴士:社区版和专业版区别不大,学生可以用教育邮箱免费申请专业版,但社区版也完全够用啦!

在这里插入图片描述

配置PyTorch 开发环境

  1. 首次启动PyCharm,选择UI主题(学姐喜欢暗色主题,写代码不伤眼~)

  2. 创建新项目:

    • 点击【New Project】
    • 设置项目位置(不要放C盘)
    • 点击【Previously configured interpreter】
    • 点击右边的【…】按钮
    • 选择【Conda Environment】
    • 选择【Use existing environment】
    • 从下拉列表中选择刚才创建的pytorch环境
    • 点击【OK】
  3. 点击【Create】创建项目

学姐提醒:记得每次打开新项目都要选择正确的Python解释器哦!

写在最后

亲爱的学弟学妹们,环境配置只是万里长征第一步,真正的挑战和乐趣在后面等着你们!希望你们能像学姐一样,在AI的世界里找到自己的热爱和方向。

如果在学习过程中遇到任何问题,不要害羞,随时来找学姐问!记得点个关注,学姐后续会更新更多有趣实用的AI入门教程哦~

祝大家学习顺利,早日成为AI大神!

学姐爱你们~😘

<think>好的,用户想在PyCharm安装PyTorch并使用国内镜像源加速下载。首先,我需要回忆相关的安装步骤和可能遇到的问题。根据引用[3],安装前需要更换conda或pip的镜像源,避免超时错误,同时确保Python版本足够高。用户的操作系统是Windows 11,PyCharm专业版,Python 3.10.5,这符合引用[4]中的环境,所以步骤应该适用。 接下来,用户需要创建虚拟环境。在PyCharm中,通常是通过File > Settings > Project > Python Interpreter来添加新环境,这里可以选择Conda或Virtualenv。如果使用Conda,可能需要指定镜像源,比如清华源,这能加速依赖下载。引用[3]提到更换镜像源的重要性,所以步骤中必须包含如何修改conda或pip的配置文件,添加国内镜像。 然后,安装PyTorch。根据引用[3]和[4],用户需要确定CUDA版本,但如果没有NVIDIA显卡,可以选择CPU版本。PyTorch官网提供了安装命令,但使用镜像源可能需要调整命令中的URL。例如,使用pip安装时,可以指定清华的镜像源,或者在conda中配置channels。 验证安装部分,引用[2]提到在Anaconda Prompt中输入Python,然后导入torch并打印版本号。同样适用于PyCharm的终端,所以需要指导用户如何在PyCharm中运行这些代码,确认安装成功。 可能遇到的问题包括镜像源配置错误、Python版本不兼容、网络问题等。需要提醒用户检查镜像源是否正确,以及环境是否激活。此外,如果使用conda,可能需要清除索引缓存,或者尝试不同的镜像源。 总结步骤应该是:配置镜像源、创建虚拟环境、安装PyTorch、验证安装。每个步骤要详细说明,特别是镜像源的配置方法,因为这是用户特别关心的部分。同时,引用相关的参考资料,比如引用[3]和[4]中的步骤,确保答案的可靠性。</think>### PyCharm 安装 PyTorch 教程(使用国内镜像源) #### **1. 准备工作:配置镜像源** - **Conda 用户**:在用户目录下找到 `.condarc` 文件(Windows 路径为 `C:\Users\用户名\.condarc`),修改内容为清华镜像源: ```yaml channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud ``` 运行 `conda clean -i` 清除缓存[^3]。 - **Pip 用户**:在 PyCharm 终端执行以下命令配置清华镜像: ```bash pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` --- #### **2. 创建虚拟环境** 1. 打开 PyCharm,进入 `File > Settings > Project: <项目名> > Python Interpreter`。 2. 点击右上角齿轮图标,选择 `Add Interpreter > Add Local Interpreter`。 3. 选择 `Conda Environment` 或 `Virtualenv Environment`,指定 Python 版本(建议 ≥3.6.2)。 --- #### **3. 安装 PyTorch** - **通过 Conda 安装**(推荐): ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 若需 GPU 版本,根据 CUDA 版本调整命令(如 CUDA 11.3): ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` - **通过 Pip 安装**: ```bash pip install torch torchvision torchaudio ``` --- #### **4. 验证安装** 在 PyCharm 中新建 Python 文件,输入以下代码并运行: ```python import torch print(torch.__version__) # 输出版本号,如 1.12.0 print(torch.cuda.is_available()) # 输出 True 表示 GPU 可用 ``` 若输出类似 `1.12.0` 和 `True`,则安装成功[^2][^4]。 --- #### **常见问题** 1. **超时错误**:检查镜像源配置是否正确,尝试切换镜像源(如阿里云、中科大)。 2. **Python 版本不兼容**:创建新虚拟环境时选择更高版本 Python。 3. **CUDA 版本不匹配**:通过 `nvidia-smi` 查看 CUDA 版本,选择对应 PyTorch 命令。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值