阅读理解之deeplabv3+

博客介绍了空洞卷积、深度可分离卷积,包括其与常规卷积的对比、深度卷积和逐点卷积的原理。还总结了提出的新颖编码器 - 解码器结构的贡献,采用DeepLabv3为编码器,应用深度可分离卷积,在相关数据集上有新的表现,并公开了基于Tensorflow的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

paper:

https://arxiv.org/pdf/1802.02611.pdf



Atrous Convolution

Atrous 卷积,就是带洞的卷积,卷积核是稀疏的。


上图(b)是带洞卷积,可以跳着选,隔一个加一个。

下图中第三个示例(c),就是带洞卷积。


带洞卷积减少了核的大小,可以达到节省内存的作用。

而且带洞卷积的有效性基于一个假设:紧密相邻的像素几乎相同,全部纳入属于冗余,不如跳H(hole size)个取一个。


Depthwise Separable Convolution

Depthwise(DW)卷积与Pointwise(PW)卷积,合起来被称作Depthwise Separable Convolution(参见Google的Xception),该结构和常规卷积操作类似,可用来提取特征,但相比于常规卷积操作,其参数量和运算成本较低。所以在一些轻量级网络中会碰到这种结构如MobileNet

常规卷积操作

对于一张5×5像素、三通道彩色输入图片(shape为5×5×3)。经过3×3卷积核的卷积层(假设输出通道数为4,则卷积核shape为3×3×3×4),最终输出4个Feature Map,如果有same padding则尺寸与输入层相同(5×5),如果没有则为尺寸变为3×3。
这里写图片描述

Depthwise Separable Convolution

Depthwise Separable Convolution是将一个完整的卷积运算分解为两步进行,即Depthwise Convolution与Pointwise Convolution。

Depthwise Convolution

不同于常规卷积操作,Depthwise Convolution的一个卷积核负责一个通道,一个通道只被一个卷积核卷积。上面所提到的常规卷积每个卷积核是同时操作输入图片的每个通道。
同样是对于一张5×5像素、三通道彩色输入图片(shape为5×5×3),Depthwise Convolution首先经过第一次卷积运算,不同于上面的常规卷积,DW完全是在二维平面内进行。卷积核的数量与上一层的通道数相同(通道和卷积核一一对应)。所以一个三通道的图像经过运算后生成了3个Feature map(如果有same padding则尺寸与输入层相同为5×5),如下图所示。
这里写图片描述
Depthwise Convolution完成后的Feature map数量与输入层的通道数相同,无法扩展Feature map。而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的feature信息。因此需要Pointwise Convolution来将这些Feature map进行组合生成新的Feature map。

Pointwise Convolution

Pointwise Convolution的运算与常规卷积运算非常相似,它的卷积核的尺寸为 1×1×M,M为上一层的通道数。所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的Feature map。有几个卷积核就有几个输出Feature map。如下图所示。
这里写图片描述

本文参考尹国冰的博客—卷积神经网络中的Separable Convolution



What We Contribute

在这里插入图片描述
总结我们的贡献:

  • 我们提出了一种新颖的编码器 - 解码器结构,它采用DeepLabv3作为强大的编码器模块和简单而有效的解码器模块。
  • 在我们的结构中,可以通过孔洞卷积任意控制提取的编码器特征的分辨率,以折衷精度和运行时间,这对于现有的编码器 - 解码器模型来说是不可能的。
  • 我们将Xception模型用于分割任务,并将深度可分离卷积应用于ASPP模块和解码器模块,从而产生更快更强的编码器 - 解码器网络。
  • 我们提出的模型在PASCAL VOC 2012和Cityscapes数据集上获得了新的soa表现。我们还提供设计选择和模型变量的详细分析。
  • 我们在 https://github.com/tensorflow/models/tree/master/research/deeplab 上公开提供基于Tensorflow的建议模型实现。

what’s next

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值