PAT乙级(Basic Level)练习题 >蜜蜂寻路

本文介绍了一个基于斐波那契数列的算法实现,用于计算蜜蜂从一个蜂房爬行到另一个蜂房的不同路径数量。输入包括多个测试用例,每个用例包含两个蜂房编号a和b,输出为从a到b的不同路径数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
nowcoder利用业余时间养了一窝蜜蜂,因为空间比较小,蜂房只有两排,如下图所示:
这里写图片描述

如你所见,蜜蜂的蜂房是正六边形,假设蜜蜂只会从左往右爬,即从1号蜂房能爬到2号和3号;从6号蜂房能爬到7号和8号……

现给出两个蜂房的编号a和b,要求计算蜂房a的蜜蜂爬到蜂房b有几条不同路线。

输入描述:
1. 输入的第一行是一个整数n
2. 接下来n行数据,每行一组测试用例
3. 每组测试用例包含两个正整数a和b,(0 < a < b < 2^31)

输出描述:
每组用例的结果单独输出一行。输出数据结果范围是 [0, 2^63)。

输入例子:
3
1 2
3 6
99 100

输出例子:
1
3
1

思路:斐波那契数列

代码如下:

import java.util.*;
public class PAT1009 {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner in = new Scanner(System.in);
        long []a = new long[103];
        a[0]=0;
        a[1]=1;
        a[2]=2;
        for(int i=3;i<103;i++){
            a[i]=a[i-1]+a[i-2];
        }
        int N = in.nextInt();
        for(int i=0;i<N;i++){
            int ta = in.nextInt();
            int tb = in.nextInt();
            System.out.println(a[tb-ta]);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值