准确度、精确度、召回率、ROC曲线、AUC值

本文详细介绍了机器学习中评估模型性能的几个关键指标:准确度、精确度、召回率,以及ROC曲线和AUC值。通过对混淆矩阵的解释,阐述了每个指标的含义和计算方式,并通过ROC曲线分析了模型的敏感性和特异性。此外,还讨论了AUC值作为衡量分类器性能的重要标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在介绍这些概念之前,先来看一下混淆矩阵:

在这里插入图片描述

TP: True Positive,将正类预测类正类的样本数量(预测正确)
FN: False Negtive,将正类预测为负类的样本数量(type II error, 漏报)
FP: False Positive,将负类预测为正类的样本数量(type I error)
TN: True Negtive,将负类预测为负类的样本数量(预测正确)

  • 准确度:准确度表示分类正确的样本数所占比例

A C C = T P + T N T P + T N + F P + F N ACC = \frac {TP+TN}{TP+TN+FP+FN} ACC=TP+TN+FP+FNTP+TN

  • 精确度、精度:该概念是针对“预测结果”而言的。表示预测为正类的样本中有多少是真的正样本

P = T P T P + F P P = \frac {TP}{TP+FP} P=TP+FPTP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值